Name:

ſ	Aufgabe	1	2	3	4	5	6	7	8	Summe:	Note:
Γ	Punkte										

Insgesamt gibt es 28 Punkte. Ausser wenn ausdrücklich erlaubt, sind alle Rechnungen ohne den TI89 durchzuführen.

Aufgabe 1 (3 Punkte) Löse die Gleichung in C

$$z + 3i = 12iz - 36$$

Aufgabe 2 (2 Punkte) Beschreibe in Worten die Punkte in der Gauss'schen Zahlenebene für die gilt $z \cdot \overline{z} = 9$

Aufgabe 3 (4 Punkte) Löse das folgende Gleichungssystem

$$2ix - iy = 11 + 84i$$
$$x - y = 42 - 11i$$

Aufgabe 4 (4 Punkte) Löse das folgende Gleichungssystem

$$(4+2i)x - y = -5 - i$$

$$(6+4i)x - 2y = -14 - 5i$$

Aufgabe 5 (3 Punkte) Verwandle in Polarform

a)
$$2 - 2i$$

b)
$$-1 + 2i$$

$$c)-5i$$

Aufgabe 6 (4 Punkte) Gib in kartesischer Form an. Sinus- und Cosinusfunktionen und Potenzen dürfen mit dem Taschenrechner berechnet werden.

a)
$$5 \angle \frac{3\pi}{4}$$

b)
$$(5 \angle 3.5\pi)^2$$

c)
$$\sqrt{(4\angle\pi/2)}$$

d)
$$\left(12\operatorname{cis}\frac{3\pi}{2}\right):\left(3\operatorname{cis}\frac{5\pi}{4}\right)$$

a) $5 \angle \frac{3\pi}{4}$ b) $(5 \angle 3.5\pi)^2$ c) $\sqrt{(4 \angle \pi/2)}$ d) $\left(12 \operatorname{cis} \frac{3\pi}{2}\right) : \left(3 \operatorname{cis} \frac{5\pi}{4}\right)$ Aufgabe 7 (4 Punkte) Teil a und b hängen zusammen, Teil c ist leicht, wenn a und b verstanden sind.

- a) Berechne ($\operatorname{cis} \frac{\pi}{2}$)⁴ und ($\operatorname{cis} \pi$)⁴
- b) Gib 4 verschiedene Zahlen in Polarform an, so dass $z^4 = 1$
- c) Gib 3 verschiedene Zahlen in Polarform an, so dass $z^3 = 1$

Aufgabe 8 (4 Punkte) Hier sind $z = e^r(\cos \alpha + i \sin \alpha)$ und $w = e^s(\cos \beta + i \sin \beta)$ zwei, etwas ungewohnt dargestellte komplexe Zahlen. Dabei sind r, s, α und β Parameter.

Erkläre zunächst, wie sich z in der Zahlenebene einzeichnen lässt, wenn p und α bekannt sind. Dabei sollen die trigonometrischen Funktionen nicht benutzt werden. (Polarform)

Berechne $z \cdot w$ und stelle das Ergebnis in der Form $e^t(\cos \gamma + i \sin \gamma)$ dar. (Berechne also t und γ aus den Parametern.)

Lösungen: 1) -3i 2) Kreis mit Radius 3 um den Ursprung

3)
$$x = 42$$
; $y = 11i$ 4) $x = 2 + 1.5i$; $y = 10 + 11i$

5) a)
$$2\sqrt{2}$$
cis $7\pi/4$ b) $\sqrt{5}$ cis 2.034 c) 5 cis $3\pi/2$

6) a)
$$-5\sqrt{2}/2 + 5\sqrt{2}/2i$$
 b) -25 c) $\sqrt{2} + \sqrt{2}i$ d) $2\sqrt{2} + 2\sqrt{2}i$

7 a) Jeweils 1 b)
$$\operatorname{cis} k\pi/2$$
 c) $\operatorname{cis} 2k\pi/3$ 8) $e^{r+s}(\cos(\alpha+\beta)+i\sin(\alpha+\beta)$