Name:

Aufgabe				Summe	Note:
Punkte				Summe.	

Insgesamt gibt es Punkte.

Aufgabe 1: (3 Punkte) Vereinfache mit Hilfe der Potenzrechengesetze. (Punkte geben die Zwischenrechnungen. Es müssen dabei Potenzrechnungen angewendet werden.)

a)
$$\left(a^{3/2} : a^{6/10}\right)^{1/5}$$

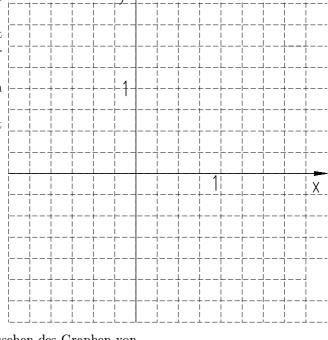
b) $a^{-4,8} \cdot a^{4/5}$

Aufgabe 2: (6 Punkte) Stimmen die folgenden Gleichungen? Punkte gibt es auf Begründungen mit Umformungen.

a)
$$\sqrt[3]{4} + \sqrt[3]{32} = 3\sqrt[3]{4}$$

b) $\sqrt[4]{\frac{1}{a}} = \frac{\sqrt[4]{a^3}}{a}$
c) $\frac{c}{\sqrt[7]{c^3}} = \sqrt[7]{c^4}$

Aufgabe 3: (6 Punkte) Hier ist n eine gerade Zahl, grösser als Null. Zeichne die folgenden vier Funktionen qualitativ richtig in das Koordinatensystem ein. (Teil a und b). Beantworte die Fragen c und d.


- a) Es wird Wert auf richtig eingezeichnete Schnittpunkte der Graphen gelegt.
- b) Ausserdem muss richtig eingezeichnet sein, welche Funktion oberhalb von welcher liegt.
- c) Wie lässt sich der Graph von m aus dem Graphen von f gewinnen?
- d) Für welche Zahlen x sind m und n nicht definiert?

Hier also die Funktionen:

$$f(x) = x^n$$
 und $g(x) = x^{n+1}$

(Erinnerung: n ist eine gerade Zahl.)

$$m(x) = x^{1/n}$$
 und $n(x) = x^{1/(n+1)}$.

Aufgabe 4: (2 Punkte) Beschreibe das Aussehen des Graphen von


$$x^{1/200}$$

in Worten. (Durch welchen Punkt geht der Graph, wie steil ist der Graph in welchem Bereich).

Aufgabe 5: (2 Punkte) Zeichne in das Koordinatensystem den Bereich ein, in dem alle Funktionen der Form

$$x^p$$

liegen. Dabei soll x > 0 und p > 1 sein.

Aufgabe 6: (3 Punkte) Nach dem 3. Keplerschen Gesetz gilt für die Umlaufzeiten der Planeten Merkur und Erde:

$$\frac{T^2}{t^2} = \frac{A^3}{a^3}$$

Dabei bezeichnet T die Umlaufzeit der Erde um die Sonne (also 1 Jahr),

t die Umlaufzeit des Merkur,

A den Sonnenabstand der Erde und

a den Sonnenabstand des Merkur.

Bekannt ist, dass der Sonnenabstand des Merkur 2/5 des Sonnenabstandes der Erde beträgt.

Berechne die Umlaufzeit des Merkur in Tagen.

Punkte gibt es auch auf die Angabe der Zwischenschritte.