Name:

F	Aufgabe	1	2	3	4	5	6	7	8	9	Summe:	Note
	Punkte											Note:

Insgesamt gibt es 14 Punkte.

Ein Körper schwingt. Diese Bewegung soll mit Hilfe der Sinusfunktion beschrieben werden.

Aufgabe 1 (2 Punkte) Schwingungsdauer ist eine Sekunde, die maximale Auslenkung ist 1, die Bewegung beginnt bei (x|y)=(0|0) und geht zunächst nach oben.

$$y(x) =$$

Die Lösung ist wäre einfach $y(x) = \sin x$, wenn die Schwingungsdauer 2π wäre.

Aufgabe 2 (1 Punkt) Schwingungsdauer ist π , die maximale Auslenkung ist 1, die Bewegung beginnt bei (x|y) = (0|0).

$$y(x) =$$

Aufgabe 3 (1 Punkt) Schwingungsdauer ist T, die maximale Auslenkung ist 1, die Bewegung beginnt bei (x|y) = (0|0).

$$y(x) =$$

Aufgabe 4 (1 Punkt) Schwingungsdauer ist T, die maximale Auslenkung ist 42, die Bewegung beginnt bei (x|y)=(0|0).

$$y(x) =$$

Aufgabe 5 (1 Punkt) Die Schwingungsdauer ist π , die Bewegung beginnt bei (x|y)=(0|1). Die Werte liegen zwischen 0 und 2.

$$y(x) =$$

Aufgabe 6 (1 Punkt) Schwingungsdauer ist T, die maximale Auslenkung ist 42, die Bewegung beginnt bei $(x|y)=(\frac{\pi}{4}|\frac{1}{\sqrt{2}})$.

$$y(x) =$$

Aufgabe 7 (1 Punkt) Schwingungsdauer ist T, die maximale Auslenkung ist 42, die Bewegung beginnt bei $(x|y)=(\frac{\pi}{4}|0)$.

$$y(x) =$$

Aufgabe 8 [Der allgemeine Fall] (3 Punkte) Schwingungsdauer ist T, die maximale Auslenkung ist A, die Bewegung beginnt bei $(x|y) = (x_0|y_0)$.

$$y(x) =$$

Aufgabe 9 [Eine Gleichung] (3 Punkte) Wir betrachten $y(x) = \sin(x)$.

Eine Lösung von y(x) = 0.5 ist $x = \pi/6$. Finden Sie 10 weitere Lösungen. Beschreiben Sie, wie sich alle Lösungen finden lassen.

Lösungshinweis: Der Ansatz $y(x) = A \cdot \sin(\omega x + \varphi)$ liefert die meisten Lösungen. A ist die Auslenkung, es gilt $\omega = 2\pi/T$ und φ liefert den Zustand der Schwingung zu x = 0.