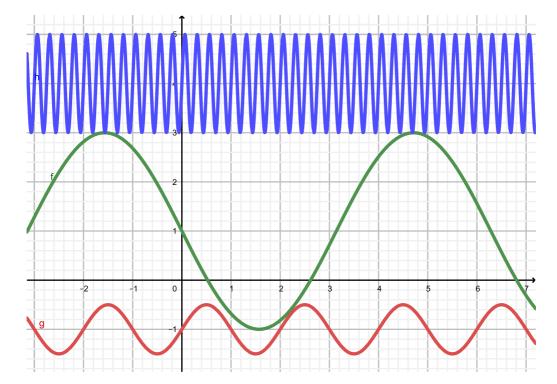
Name:

Aufgabe	1	2	3	4	5	6	7	Cummo	Note:
Punkte								Summe:	

Insgesamt gibt es 21 Punkte.

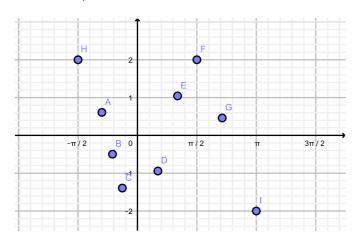
Die Formelsammlung und der Taschenrechner TI30X Pro sind zugelassen.

- **1.** (2 Punkte) Welcher Winkel im Gradmass zwischen 0 und 360 Grad entspricht den folgenden im Bogenmass gegebenen Winkeln?
 - a) $\pi/4$ (45°)
- b) $-\pi/2$ c) 9 (170°)
 - c) 9 (155.66°)
- **2.** (4 Punkte) Skizzieren Sie die Schwingung. Dabei müssen die Nullstellen und die Maximalausschläge richtig eingezeichnet werden.


(z.B. mit Geogebra selber zeichnen)

a)
$$f(x) = 3\sin(x + \pi)$$
.

b)
$$g(x) = \sin(0.5\pi(x-1))$$


3. (6 Punkte) Finden Sie die Funktionsgleichungen zu den drei Schwingungen

$$(f(x) = 2\sin(x + \pi) + 1; g(x) = 0.5\sin(\pi x) - 1; h(x) = \sin(8\pi x) + 4)$$

4. (3 Punkte) Von einer Schwingung sind nur die eingezeichneten Punkte bekannt. Zeichnen Sie eine Schwingungsfunktion ein, die durch alle Punkte geht, und bestimmen Sie ihre Funktionsgleichung.

$$(2\sin(2x-\frac{\pi}{4})$$

5. (2 Punkte) Finden Sie eine Lösung der Gleichung $2 \sin(3x) = 1$. (10° = 0.17)

- **6.** (2 Punkte) Bewegung auf dem Einheitskreis (Eine Einheit ist hier 1 cm). Tipp: Skizzieren Sie die Situation.
 - a) Ein Punkt bewegt sich die 20 cm gegen den Uhrzeigersinn auf dem Einheitskreis. Er startet beim Punkt (1|0). Bei welchem Punkt endet die Bewegung? $((\cos(20), \sin(20)) = (0.41, 0.91))$
 - b) Ein Körper bewegt sich gegen den Uhrzeigersinn mit konstanter Geschwindigkeit 2cm pro Sekunde auf dem Einheitskreis. Er startet bei t = 0 im Punkt (1|0).
 An welchem Punkt befindet sich der Körper zur Zeit t? ((cos(2t), sin(2t)))
- 7. (2 Punkte) Begründen Sie die folgende Gleichung mit dem Graphen der Sinusfunktion. sin(-x) = -sin(x)

(Sinusfunktion zeichnen. Gesagt werden muss, dass diese punktsymmetrisch ist zum Ursprung. Dann lässt sich an einem Beispiel der Zusammenhang verdeutlichen. Zum Beispiel $\sin(-2) = -\sin(2)$)