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2AbstractIn 1992 Claude Viterbo used generating functions to de�ne symplecticcapacities for compactly supported Hamiltonian di�eomorphisms ' of thespecial symplectic manifold R2n. He applied them to de�ne capacities foropen sets in R2n. We extend the de�nition of these capacities to arbitrarysets in R2n and prove that this generalization is non trivial: the capacityof a strictly convex hypersurface � is equal to the capacity of an openbounded set U with @U = � which is a positive number.We prove this by considering a Hamiltonian function which is constanton U and zero on a neighbourhood of U and deform it to a Hamiltonianfunction with support in a neighbourhood of �. Via the Hamiltonianequations we can associate to these functions Hamiltonian isotopies. Weshow that the deformation can be performed without changing the capac-ities of the time one di�eomorphisms. To do this we explicitely computethe Maslov indices of periodic orbits of the 
ow. We use a de�nition ofthe Maslov index from Claude Viterbo and David Theret and develop analgorithm to compute the indices via the spectral 
ow of a �nite dimen-sional operator.We then apply this result to show a generalized �xed point theorem whichis a partial generalization of a result of J�urgen Moser from 1978. Moserconsidered any compact simply connected coisotropic submanifold A ofan exact symplectic manifoldM and an exact symplectic di�eomorphism' which is C1{close to the identity. He proved that there exist two pointsx 2 A such that '(x) and x are on the same leaf of the characteristicfoliation on A.We only consider strictly convex hypersurfaces � � R2n. Under thehypothesis that the capacity of ' is smaller than the capacity of U weshow that there exists a point x 2 � which is mapped under ' onto itsown leaf.This answers a question of Helmut Hofer who in 1989 proved a similiarresult formulated in terms of Hofer's displacement energy and capacitiesde�ned by Ivar Ekeland and Helmut Hofer. His result is valid for hy-persurfaces of restricted contact type. He asked whether one could useViterbo's capacities instead to �nd bounds on the capacities of symplecticdi�eomorphisms that would guarantee the existence of a point which ismapped onto its own leaf.



3ZusammenfassungClaude Viterbo benutzte 1992 Erzeugende Funktionen, um symplektische Ka-pazit�aten f�ur Hamiltonsche Di�eomorphismen mit kompaktem Tr�ager im R2nzu de�nieren. Damit de�nierte er dann Kapazit�aten f�ur o�ene Mengen im R2n.Wir erweitern die De�nition dieser Kapazit�aten auf beliebige Mengen im R2nund zeigen, dass die De�nition nicht trivial ist: Die Kapazit�at einer strikt kon-vexen Hyper
�ache � ist gleich der Kapazit�at einer beschr�ankten o�enen MengeU mit @U = �. Kapazit�aten o�ener Mengen sind positiv.Den Beweis f�uhren wir, indem wir eine Hamiltonsche Funktion betrachten,die konstant auf U ist und Tr�ager in einer Umgebung von U hat. Wir de-formieren diese in eine Funktion mit Tr�ager in einer Umgebung von �. �Uberdie Hamiltonschen Di�erentialgleichungen erhalten wir dann Hamiltonsche Iso-topien. Wir zeigen, dass die Deformation ausgef�uhrt werden kann, ohne dieKapazit�aten der Zeit{1{Di�eomorphismen zu �andern. Dabei berechnen wirexplizit die Maslov Indizes der periodischen Orbits des Flusses. Wir benutzeneine De�nition des Maslov Index, die auf Claude Viterbo und David Theretzur�uckgeht und entwickeln einen Algorithmus, den Maslov Index �uber denSpektral
uss eines endlichdimensionalen Operators auszurechnen.Diese Resultate wenden wir an, um einen verallgemeinerten symplektischenFixpunktsatz zu zeigen, der eine teilweise Verallgemeinerung eines Resultatsvon J�urgen Moser aus dem Jahre 1978 ist. Moser betrachtete eine beliebigekompakte, einfach zusammenh�angende, coisotrope Untermannigfaltigkeit Aeiner exakt symplektischen Mannigfaltigkeit M und einen exakt symplekti-schen Di�eomorphismus ', der C1{nahe bei der Identit�at ist. Er zeigte, dasszwei Punkte x 2 A existieren, so dass '(x) und x auf dem gleichen Blatt dercharakteristischen Bl�atterung auf A liegen.Wir betrachten nur strikt konvexe Hyper
�achen � � R2n. Unter der Voraus-setzung, dass die Kapazit�at von ' kleiner als die Kapazit�at von � ist, zeigenwir, dass ein Punkt x 2 � existiert, der unter ' auf sein eigenes Blatt abgebildetwird.Das beantwortet eine Frage von Helmut Hofer. Dieser benutzte 1989 seine`displacement' Energie und Kapazit�aten, die von Ivar Ekeland und HelmutHofer de�niert wurden, um ein �ahnliches Resultat f�ur Hyper
�achen vom ein-geschr�ankten Kontakt{Typ zu zeigen. Hofer fragte, ob Viterbos Kapazit�atengenutzt werden k�onnen, um Schranken f�ur Kapazit�aten symplektischer Di�eo-morphismen zu �nden, so dass die Existenz eines Punktes garantiert ist, derauf sein eigenes Blatt abgebildet wird.



4
Periodic hobbitsIn [To] J.R.R. Tolkien stated thatIn a hole in the ground there lived a hobbit. Not a nasty, dirty, wet hole,�lled with the ends of worms and an oozy smell, nor yet a dry, bare, sandyhole with nothing in it to sit down on or to eat: it was a hobbit-hole, andthat means comfort.AcknowledgmentsI would like to thank my advisor Professor Helmut Hofer having the ideafor the subject of this thesis and for guiding me.I would like to thank David Hermann, Markus Kriener and David Theretfor inspiring discussions.I would like to thank Professor Dietmar Salamon, Professor Claude Viterboand Professor Eduard Zehnder for interest in my development.I would like to thank Meike Akveld and Michel Andenmatten for care-fully proofreading preliminary versions of this work, correcting numeroustyping mistakes and considerably improving the English.I would like to thank the assistants at the ETH for being kind colleagues.I would like to thank Professor Jens Gamst for being the advisor of mydiploma thesis and during the �rst period of my PhD project.I would like to thank the `Deutsche Forschungsgemeinschaft' for support-ing me during my time at the `Graduiertenkolleg komplexe DynamischeSysteme'.I would like to thank Heike, Jana, my parents and my brother for severalreasons.
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6 1 INTRODUCTION1 IntroductionGeneralized �xed pointsMany problems in symplectic geometry lead to questions like whetherLagrangian submanifolds of a symplectic manifold (M;!) intersect orwhether a symplectic di�eomorphim ' has �xed points. One can connectthese two questions if one looks at the diagonal � in (M �M; (�!)�!),and intersects � with the graph of '. The intersection points of thesetwo Lagrangians are the �xed points of '.In 1978 J. Moser presented in his paper `A Fixed Point Theorem in Sym-plectic Geometry', [M], another point of view to bring these two prob-lems together. He considered a compact simply connected coisotropic(see appendix A in this work) submanifold A � M . It is foliated by k{dimensional leaves if the codimension of A is k. Denote the leaf throughx 2 A by LA(x). Given a symplectic di�eomorphism ' which is close tothe identity Moser proved (see theorem 2.1) that there are at least twopoints which are mapped onto its own leaf: '(x) 2 LA(x). This can beconsidered as a `generalized �xed point'.For a Lagrangian submanifold A the leaves are n{dimensional, henceLA(x) = A. Consequently '(A) \ A consists of at least two points. Theother extreme is that A = M . In this case the leaves are points and oneconsiders symplectic �xed points.There are interesting intermediate cases, for example hypersurfaces � �M which are automatically coisotropic. The leaves are one dimensional.Moser then considered in the case n > 1 the harmonic oscillator givenby the Hamiltonian function H0(q; p) = 12�ai(q2i + p2i ) and a functionH1 : R � R2n ! R with support in [0; 1] � R2n. Denote by 't theHamiltonian 
ow associated to H1. Moser proved that for every c > 0there exists a point x 2 H�1(c) =: � such that '(x) 2 L�(x). This isvalid in the case n = 1 as well. To see this we tell a little story:Suppose little Jana1 is sitting on a swing. There is no friction so her en-ergy is conserved. Then there comes a short (Hamiltonian) breeze slowingher down2. She looses energy. She thinks that if only the same breeze hadhit her at another point in her movement it would have accelerated her.1see http://www.math.ethz.ch/~tlinne/jana.jpg2ok, that is not consistent | now there is friction | every model has its disadvan-tages



7So there has to be a point in her movement where the same breeze wouldleave her on her old energy level again. If the breeze is too stormy it wouldhave accelerated her in any case | which could be very uncomfortable.This little example shows that the natural question that arises is thefollowing: Can the smallness condition in Moser's theorem be replaced bygeometric conditions on � and '?This work deals with the above question. Before explaining our approachvia `generating functions' we give another partial answer which was de-rived by H. Hofer in his paper `On the topological properties of symplecticmaps', [H], by in�nite dimensional variational methods.CapacitiesHofer used symplectic invariants, the symplectic capacities (see de�nition2.2). The �rst capacity, the so{called `symplectic width' was discoveredby M. Gromov in his famous paper `Pseudo{Holomorphic Curves in Al-most Complex Manifolds', [Gr]. The capacity cEH that Hofer used wasde�ned by E. Ekeland and H. Hofer in `Symplectic Topology and Hamil-tonian Dynamics', [EH]. Hofer then de�ned the energy of symplecticdi�eomorphisms with compact support3.He considered a hypersurface of restricted contact type (see de�nition A.1)with capacity cEH(�) and a symplectic di�eomorphism ' with energyE(') � cEH(�). He proved that there exists a point x 2 � such that xand '(x) are on the same leaf of the characteristic foliation on �.see theorem 2.5.Generating functionsIn the search for �xed points and Lagrangian intersections there havebeen used in the past years two main techniques to tackle problems insymplectic geometry. In 1978 P. Rabinowitz, [R], discovered that thedegenerate action functional of classical mechanics can be successfullyused for existence results. Afterwards, A. Floer, H. Hofer and manyothers used in�nite dimensional action functionals on the loop space ofany symplectic manifolds to prove strong existence results.3This energy can be used to de�ne a bi{invariant metric on the space of symplecticdi�eomorphisms with compact support.



8 1 INTRODUCTIONThe other approach is used in the framework of cotangent bundles ofclosed manifolds. It stays in �nite dimensions and uses generating func-tions, a concept which was already known to H. Poincar�e in the lastcentury. L. H�ormander in [Ho] extended the de�nition of generating func-tions to higher dimensional vector bundles to solve problems in partialdi�erential equations.Generating functions describe Lagrangians in the cotangent bundle of agiven manifold B. One question is: Which Lagrangians admit generatingfunctions?In his paper `Une id�ee du type g�eod�esiques bris�es pour les syst�emes hamil-toniens', [Ch], M. Chaperon in 1984 presented an idea how to constructgenerating functions for graphs by a broken geodesic method. The ideawas prompted by the Lyapunov{Schmidt reduction method of the classi-cal action functional in the proof of the Arnold concecture of the torus.In 1986 J. C. Sikorav utilized in his paper `Sur les immersions lagrangi-ennes admettant une phase g�en�eratrice globale', [S], this idea to prove forcotangent bundles that the property of having a generating function isinvariant under Hamiltonian isotopy. He even proved that the generatingfunction can be chosen to be quadratic at in�nity, see theorem 3.4.In his paper `Symplectic Topology as the Geometry of Generating Func-tions', [V2] C. Viterbo in 1992 showed that the `generating functionsquadratic at in�nity' constructed this way are unique up to some naturaloperations, see theorem 3.54.With the help of the uniqueness theorem C. Viterbo was able to con-struct symplectic capacities for open sets in R2n and also for symplecticdi�eomorphisms.It is not clear how far Ekeland/Hofer's and Viterbo's capacities agree.H. Hofer then asked whether Viterbo's capacities can be used to prove aresult similar to his theorem mentioned above.In our work we answer this question positively for the case of strictlyconvex hypersurfaces.4There were some imprecisements in his proof, namely an incorrect reference to atheorem of J. Cerf, [Ce]. The proof was cleared in the thesis of D. Theret, [Th].



9We next present a summary of each chapter of this thesis. (Chapter 1 isthis introduction.)Chapter 2It is devoted to the formulation of the theorems of Hofer and Moser.Furthermore, most of the basic de�nitions are stated.Chapter 3The third section deals with the concept of generating functions. Sikorav'sexistence and Viterbo's uniqueness theorem can be found here. We recallthe de�nition of Viterbo's capacities and some of their properties fromViterbo's paper [V2], adding proofs where Viterbo has skipped them. Forproposition 3.8, S. Born in his diploma thesis has presented an improvedproof which we add as well. Furthermore some inequalities we need inthe last section are shown (Proposition 3.13).In addition, we extend Viterbo{capacities to arbitrary subsets of R2n. Weprove that the Viterbo{capacity of the unit sphere is �, thus showing thatViterbo's capacities are non trivial, even for sets which are not open.Chapter 4In the fourth section we introduce a version of the Maslov index whichis adapted to generating functions. There are several possibilities to gen-eralize the Maslov index for Lagrangian loops (see [A]) and the relatedConley{Zehnder index for periodic orbits (see [CZ]) to the case of arbi-trary paths. Viterbo in [V1] introduced a generating function version ofthis index proving that it really is the Maslov index by comparing it tothe index in [CZ] and [Du]. Theret in [Th] proved that this index satis�esthe axioms of a Maslov index as de�ned by Capell/Lee/Miller in [CLM]without leaving the context of generating functions.Out of Theret's work we derive a generic formula (proposition 4.7) forthe index which nicely re
ects the `broken geodesic' nature of generatingfunctions quadratic at in�nity: In the construction of generating func-tions for Hamiltonian isotopies one writes the isotopy as a composition ofsymplectic maps



10 1 INTRODUCTION
'1 = ('1 � '�1tn ) � : : : � ('ti � '�1ti�1) � : : : � ('t1 � I):Here the `breaking points' tk are chosen such that ker(d('t � '�1ti�1)(x) +I) = f0g for all t 2]ti�1; ti] and all x 2 R2n.Our formula for the Maslov index states that one has to compute the spec-tral 
ow of a �nite{dimensional symmetric operator | but only as longas d't has no eigenvalue �1. In the generic case de�ned in proposition4.7 there is only a �nite number of times tk such that d't has eigenvalue-1.Thus we compute the indices on time intervals ]tk�1; tk] and then add upthese indices.In contrast, the Maslov index de�ned intrinsically by H. Hofer, C. Wysoc-ki and E. Zehnder in [HWZ1] and [HWZ2] uses the spectral 
ow of anin�nite dimensional self adjoint operator | and one does not need tobreak up.Thus in the context of generating functions one stays in the �nite di-mensional realm | for the prize of having to break up and getting morecomplicated formulas.We then prove that this formula is really generic: Every path of symplecticmatrices can be deformed without changing its Maslov index to one towhich the formula applies.Chapter 5In this section we prove that for a strictly convex closed hypersurface �and a bounded set U with @U = � the capacities agree:c(U) = c(�):To do this we have to deform a Hamiltonian function H which is constanton U and 0 outside a small neighbourhood of U to a function which isconstant on a small neighbourhood of � and 0 on a slightly bigger neigh-bourhood without changing the capacities of the associated Hamiltoniandi�eomorphisms.In the proof we need to control the Maslov indices of the periodic orbitsduring the deformation | which we can do with the help of the genericformula.



11Chapter 6We consider a strictly convex closed hypersurface with capacity c(�) anda Hamiltonian di�eomorphism ' satisfying c(') < c(�). We prove thatthere always exists a point x 2 � such that x and '(x) are on the sameleaf of the characteristic foliation on �.We next sketch the proof. For U with @U = � we can vary the size of Uby multiplying every x 2 U with a real number �, thus obtaining �U .As in chapter 4 we consider a sequence of Hamiltonians Hk with supportin (1 + 1=k)U n (1� 1=k)U such that the capacities of the time one 
owsare close to c(�).These Hamiltonians have for j�j < 1=k the strictly convex hypersurfaces(1 + �)� as regular energy surfaces. We then �nd a point x 2 (1 + �)�such that its image '(x) is on the same leaf:'(xk) 2 L(1+�)�(xk):We �nd a bound on the length of the leaves independent of k. Passing tothe limit k !1 and applying Arzela{Ascoli yields that there is a pointx 2 � with '(x) 2 L�(x):Appendix 1Here we recall the concepts of coisotropic submanifolds and symplecticreduction following Weinstein [W].Appendix 2We compare di�erent versions of the Maslov index.



12 2 DEFINITIONS AND THEOREMS2 Basic de�nitions and generalized �xedpoint theorems2.1 Basic de�nitions and sign conventionsA symplectic manifold (M;!) is a manifoldM together with a closed nondegenerate 2{form !. It is called exact if ! = d�. The main example, infact, the only one we need, is the cotangent bundle M = T �B �! B of agiven manifold. On cotangent bundles there is a canonical construction tomake them symplectic manifolds. In local coordinates (q; p) the canonicalone form � is de�ned as � = �pidqi = pdq for short. The global de�nitionis as follows: Given �q;p 2 Tq;p(T �B) we set�(�) = p(T�(�)):We de�ne ! = �d� = �d(pdq) = dq ^ dp. A di�eomorphism ' iscalled symplectic if '�! = ! and exact symplectic if '�� � � = dFfor some function F on M . To a given function (called time dependentHamiltonian) H : R�M ! R we associate the Hamiltonian vector �eldXH de�ned by iXH! = dHwhere dH denotes derivative in the space variable. The 
ow 't de�nedby _'t = XH('t) and '0 = Id is called Hamiltonian isotopy, its time onedi�eomorphism we denote by '1 = '. The 
ow consists of symplecticmaps, exact symplectic if M is exact symplectic.We say that H, 't and ' are associated to each other. We say that ' hassupport in U if ' = Id on M n U .We now specify these concepts for the special case M = R2n. With thestandard scalar product < �; � > we write ! =< J �; � > withJ := � 0 �II 0 � : (1)We write (q; p) = x. For �x := 12 < Jx; � > we have d�x = ! =< J �; � >.We can write the Hamiltonian equations as_' = �JH 0(')



2.2 Generalized �xed point theorems 13where H 0 is the gradient of H taken in space direction.Example: In R2 we have for H(x) = 1=2(q2 + p2) the 
ow't� qp � = � cos t sin t� sin t cos t � = e�Jtx: 2We de�neH0(R2n) := f' j ' = '1 is associated to a compactly supportedHamiltonian function H : R� R2n ! Rg.2.2 Generalized �xed point theoremsWe formulate Moser's theorem about generalized �xed points from [M].We refer to Appendix A for the de�nition of coisotropic submanifolds.Theorem 2.1 (Moser) Let (M;!) be a simply connected exact symplec-tic manifold with � = d!. Let A j,! M be a compact r{codimensionalcoisotropic embedded submanifold. Let  : M ! M be exact symplecticsuch that  is C1{close to the identity on a neighbourhood of j(A).Then there exist at least two points x 2 M such that  (x) 2 LA(x), thatis x and  (x) are on the same leaf in M .The proof of this theorem shows one of the main reasons why one usesgenerating functions: One tries to reformulate the intersection problemsuch that you look for critical points of functions | which are well un-derstood.Hence we sketch the proof here, but only for M = R2n, thus avoiding alltechnical di�culties.Proof:On R2n�R2n we use the symplectic form !� (�!). Denote by x = (q; p)the coordinates on the second and by �x = (�q; �p) coordinates on the �rstfactor. ~�(�x;x)(��; �) :=< J �x; �� > � < Jx; � >



14 2 DEFINITIONS AND THEOREMSmakes (R2n � R2n; ! � (�!)) exact. De�ne~�(�x;x)(��; �) :=< J(�x� x); �� + � > :We have that ~� = 0 on the diagonal � � (R2n�R2n) and ~�� ~� is exact.We de�ne a map ' : A ! A such that '(x) 2 LA(x) is the point onLA(x) closest to  (x). (Here we need the smallness condition.)We look for points with  (x) = '(x). Consider the function � : A !A�A, x 7! ('(x);  (x)). One shows that �� ~� = dF is exact. The criticalpoints of F are the points we looked for | They exist since A is compact.2It is a natural task to try to substitute the smallness condition in Moser'stheorem by bounds depending on the `symplectic size' of the submanifoldand the symplectic map. To do this we need symplectic invariants, pro-vided by the concept of a capacity. We present the de�nition by Ekelandand Hofer, [EH] which is applicable for subsets of R2n. We de�ne B2n(r)to be the 2n{dimensional ball and Z2n(r) the symplectic cylinderZ2n(r) = f(x1; : : : ; xn; y1; : : : ; yn) 2 R2n j x21 + y21 � r2gDe�nition 2.2 A symplectic capacity is a map c which associates to ev-ery subset U of R2n a real number c(S) 2 [0;1] such that the followingaxioms hold.(A1) Normalization: c(B2n(1)) = c(Z2n(1)) = �.(A2) Monotonicity: If ' 2 H0(R2n) and '(U) � Vthen c(U) � c(V ).(A3) Conformality: c(�U) = �2c(U).One example of a symplectic capacity is the symplectic width from Gro-mov, [Gr]. We need the following example of a capacity which has astronger property than (A2).Theorem 2.3 (Ekeland/Hofer) Let � be of restricted contact type5and U be a bounded set such that @U = �.There exists a symplectic capacity cEH such that cEH(�) = cEH(U).5see de�nition A.1



2.2 Generalized �xed point theorems 15If for a di�eomorphism ' we furthermore have '�! = �! it holds thatcEH('U) = �2cEH(U).In [H] Hofer de�nes the `displacement energy' of symplectic di�eomor-phisms in H0(R2n) to beEH(') := inffsupH � infHj H is a Hamiltonian functionassociated to 'g.Theorem 2.4 (Hofer) The map dH : H0(R2n)�H0(R2n)! [0;1) de-�ned by d( ; �) = EH( �1') de�nes a bi{invariant metric on H0(R2n)(bi{invariant means for � 2 H0(R2n) we have d(� ; ��) = d( ; �) =d( �; ��)).Remark: In the de�nition of the displacement energy one can use insteadof supH � infH the number maxt2[0;1] [maxxH(t; x) � minxH(t; x)] orthe L1{norm of the oscillation.We are now able to formulate Hofer's generalized �xed point theorem.Theorem 2.5 (Hofer) Let � be of restricted contact type and U be abounded set such that @U = �. Let ' 2 H0(R2n) such that EH(') �cEH(�). Denote by L�(x) the leaf of the characteristic foliation on �through x, see appendix A.Then there exists x 2 � such that'(x) 2 L�(x):Ekeland and Hofer de�ned their capacity via an in�nite dimensional varia-tional principle. In the following section we will de�ne Viterbo's capacitieswhich are constructed with �nite dimensional methods.Hofer asked whether there exists a theorem similiar to theorem 2.5 forViterbo's capacities instead of Ekeland/Hofer's capacities. In section 6we will answer this question positively, at least for strictly convex closedhypersurfaces.



16 3 GENERATING FUNCTIONS3 Generating functions3.1 Generating functionsIf P : R2n ! R
2n is a symmetric matrix then its graph �(P ) is aLagrangian subspace in (R2n � R2n; (�!) � !) . Hence for a functionS : Rn ! R the set f(x; dxS) j x 2 Rng � T �Rn is a Lagrangian subman-ifold of T �Rn (Look at the tangent spaces). We call S a naive generatingfunction for f(x; dxS) j x 2 Rng. By introduction of some auxiliary vari-ables we can generate more general Lagrangians than just `graphs' in thecotangent bundle. The following de�nition also works for non trivial vec-tor bundles but since we do not need them we restrict to trivial bundlesB � RN .De�nition 3.1 Let � : B�RN ! B be a trivial vector bundle on a closedmanifold B. Let S : B�RN := E ! R be a function (x; v)! S(x; v) 2 Rwhose �ber derivative is transverse to zero, i.e. for the points of the set�S = f(x; v) 2 E j @S@v (x; v) = 0gthe derivative T @S@v has maximal rank. Thus �S is a manifold. De�ne amap i : �S ! T �B ; (x; v) 7! �x; @S@x� :S is called a generating function for L := i(�S).Proposition 3.2 With the above assumptions on the rank L := i(�S) �T �B is an immersed Lagrangian manifold.Proof:Consider �rst the case M = Rn. Then in T �(Rn � Rk) we considerthe vectors that can be written as (q; v; p; 0). They form a coisotropicsubspace EH . The complement EH! is given by the vectors of the form(0; v; 0; 0) The reduction EH=EH! hence consists of vectors of the form(q; p) and can be identi�ed with T �Rn.



3.1 Generating functions 17The set ~L := f(q; v; p; w) j p = @S@q ; w = @S@v gis a Lagrangian submanifold of T �(Rn � Rk).Since T @S@v is non singular we have Tx ~L + TxEH = TxT �(Rn � Rk)Hence the reduction of ~L is Lagrangian and is given by �(~L\EH) = i(�).To see that this works on manifolds as well we only need to observe thatEH can be de�ned globally as the set of those cotangent vectors thatannihilate the kernel of T�. The reduction of EH is T �B. The rest arelocal constructions. 2We show that we can generate more complex Lagrangians than justgraphs:Example: For B = R the function S : R� R2 ! R(x; v1; v2) 7! �v31=3 + xv1 � v32=3 + (1� x)v2generates an upright �gure eight. 2Proposition 3.3 The circle S1 � R2 has no generating functionSketch of Proof: In section 4.2 we de�ne the Maslov index which asso-ciates to every path of Lagrangian sub spaces of R2n an integer. We nowconsider an arbitrary Lagrangian submanifold of R2n. If we associate toeach closed loop 
(t) in L � T �Rn the path of Lagrangians T
(t)L we geta loop of linear Lagrangians. Associating to this loop its Maslov indexwe get an integer �(
). It turns out that the map 
 ! R represents acohomology class in H1(L;Z), the Maslov class �(L).It turns out that the Maslov class is invariant under reduction (���(�L) =�(L)) and is zero for graphs, see C. Viterbo [V1], section 2.For the path 
(t) = (sin t;� cos t) we haveT
(t)S1 = f(r cos t; r sin t) j r 2 RgIn proposition 4.4 we shall show that its Maslov index is �2. 2



18 3 GENERATING FUNCTIONS3.2 Generating functions quadratic at in�nityThe natural question that arises is: When does a given Lagrangian sub-manifold have a generating function. Up to now there are only partialanswers. Since we are interested in critical points of S we only considergenerating functions of a special type that have `su�ciently' many criticalpoints.If for jjvjj > c large S(x; v) = Qx(v) whereQ is a non degenerate quadraticform on each �ber, S is called a generating function quadratic at in�nityabbreviated by gfqi. We can choose S such that Qx = Q does not dependon the base variable, see [Th].The zero section in T �B has the generating function S(q) = 0. We nowhave the following important existence result proved by C. Sikorav in1986, [S]:Theorem 3.4 (Existence, Sikorav) Let B be a closed manifold. Theproperty of having a gfqi is invariant under Hamiltonian isotopy on T �B.Thus every Lagrangian submanifold L � T �B which is Hamiltonian iso-topic to the zero section has a gfqi.See also [Tr] for a proof in the context of paragraph 3.4. 2There are some operations on generating functions leaving L �xed:� Let S1 : E ! R, S2 : E ! R be two generating functions. If thereexists a �ber preserving di�eomorphism� : E ! E; (x; v) 7! (x; '(x; v))with S2 � � = S1 + const then S1 and S2 generate the same La-grangian immersion and are called equivalent.� Let S1 : E1 ! R be a generating function and Q2 : E2 ! R be anon degenerate quadratic form on the �bers. Then S2 = S1 +Q2 :E1 � E2 ! R generates the same Lagrangian immersion.If S2 is obtained from a gfqi S1 by adding a quadratic form, then S2 isequivalent to a gfqi, see [Th]. This gfqi is called a stabilization of S1.We will need that the critical points we are interested in are independentof the gfqi chosen. To do this we need the other important theorem inthe theory of generating functions



3.3 Invariants for Lagrangian submanifolds 19Theorem 3.5 (Uniqueness, Theret and Viterbo) Let B be a com-pact manifold. Let ' be the time one di�eomorphism of a Hamiltonianisotopy on T �B. De�ne L := '(0B) where 0B � T �B is the zero section.The gfqi for L is unique up to stabilization and equivalence.This theorem is due to Viterbo [V2], see also [Th] for a detailed proof. 23.3 Invariants for Lagrangian submanifoldsFollowing Viterbo [V2] we may de�ne invariants of Lagrangian subman-ifolds Hamiltonian isotopic to the zero section and coinciding with thezero section on a open set U (in the next section U will be a neigh-bourhood of the north pole in S2n). Let S : E ! R be a gfqi for L,normalized such that S(x; v) = 0 for the critical points in U . De�neS� := fx 2 EjS(x) � �g.Since S is quadratic at in�nity the homotopy type of the pairs (S�; S�)and (S�; S��) does not depend on � for large �. We may thus write(S1; S�1) to denote (S�; S��) for large �. Denote by Dk the unit ballbundle of dimension k. We have (S1; S�1) � (DindQ; SindQ�1), whereindQ is the index of the quadratic form to which S is equal `at in�nity'.The Thom isomorphism T : H�(B)! H�+indQ(S1; S�1) between coho-mologies is shifting the grading by the index of Q6 . For u 2 H�(B) wede�ne:c(u; L) := inff� j the image of Tu under the natural mapH�(S1; S�1)! H�(S�; S�1) is non zerog:In Proposition 3.10 we will prove that c(u; L) does not depend on S.Furthermore we have:Proposition 3.6 (i) c(u; L) is a critical value for S.(ii) Let (x; v) 2 B � RN such that S(x; v) = c(u; L). If d2S(x; v) isnon degenerate we have ind d2S(x; v) = d + ind Q =: q where Q is thequadratic form to which S is equal at in�nity and d is the degree of thecohomology class considered.6Since the bundles we are considering are trivial, the Thom isomorphism is givenby the Kuenneth formula.



20 3 GENERATING FUNCTIONSProof: (i) is an application of the minimax principle. Since S is quadraticat in�nity and non degenerate it satis�es the Palais{Smale condition. Ifc(u; L) = c were not a critical value we would have that Sc+� � Sc��, henceH�(Sc+�; S�1) �= H�(Sc��; S�1). But in H�(Sc+�; S�1) the element Tuis non zero and in H�(Sc��; S�1) it is zero.(ii) We consider a non degenerate critical point on level c. Since weare working in cohomology we can assume that there is only one criticalpoint on level c. Consider the triple S�1 � Sc�� � Sc+� and its exactcohomology sequence induced by the natural inclusions�! Hq(Sc+�; Sc��) i��! Hq(Sc+�; S�1) j��! Hq(Sc��; S�1) �!With the natural mapsHq(S1; S�1) j���! Hq(Sc��; S�1)we have j� � j�+(Tu) = j��(Tu). By de�nition it holds that j��(Tu) = 0and j�+(Tu) 6= 0. Consequently j�+(Tu) is in the kernel of j�. Due toexactness there is a non trivial element in Hq(Sc+�; Sc��).By looking at S in a Morse chart we see that (Sc+�; Sc��) � (Dk; Sk�1)where k is the index of the critical point. Hence0 6= Hq(Sc+�; Sc��) = Hq(Dk; Sk�1) = (R q = k0 elseHence d+ ind Q = q = k. 2Proposition 3.7 Denote by T ��(B �B) the restriction of T �(B �B) tothe diagonal � of (B�B). Let L1 and L2 be Lagrangian submanifolds ofT �B.Assume that L1 � L2 is transverse to T ��(B � B). De�neL1 + L2 := f(q; p) 2 T �M j p = p1 + p2; (q; p1) 2 L1; (q; p2) 2 L2g:i) In this situation L1 + L2 is a Lagrangian submanifold of T �(B).ii) Let S1 and S2 be generating functions for L1 and L2. De�neS1]S2(x; v; w) = S1(x; v) + S2(x; w):Then S1]S2 is a generating function for L1 + L2.



3.3 Invariants for Lagrangian submanifolds 21This is proposition 3.2 in [V2]. 2Proposition 3.8 Denote by u [ v the cup product of two cohomologyclasses u and v. Thenc(u [ v; S1]S2) � c(u; S1) + c(v; S2)This is proposition 3.3 in [V2]. the proposition is the crucial tool incomputations of the c(u; L). In his diploma thesis, Stefan Born, [Bor]has found a simpli�ed proof which we shall present here. To this aim we�rst present the following result for the cross product of two cohomologyclasses.Proposition 3.9 Let B1 and B2 be two closed manifolds. Let S1 + S2 :E1 � E2 ! R be a generating function for L1 � L2 � T �(B1 � B2). Forthe cross product u� v 2 H�(B1 �B2) we havec(u� v; S1 + S2) = c(u; S1) + c(v; S2):Proof of proposition 3.9: Denote by Q1 and Q2 the quadratic forms towhich S1 and S2 are equal at in�nity and by q1 and q2 the indices of theseforms.We have a commutative diagramH�(S�1 � S�2 ; S�11 � S�12 )  � H�((S1 + S2)�+�; (S1 + S2)�1)" "H�(S11 � S12 ; S�11 � S�12 )  � H�((S1 + S2)1; (S1 + S2)�1)" T1 � T2 " TH��q1�q2(B1 � B2) �= � H��q1�q2(B1 � B2)which shows c(u� v; S1 + S2) � c(u; S1) + c(v; S2).For the other inequality we assume that � < c(u; S1) and � < c(v; S2)are not critical values. The long exact sequences of the triples S�11 �S�1 � S11 and S�12 � S�2 � S12 guarantee the existence of classes ~u 2H�(S11 ; S�1 ) and ~v 2 H�(S12 ; S�2 ) whose images are T1u and T2v.Their cross product in H�(S11 � S12 ; S�1 � S12 [ S11 � S�2 ) is mapped onT (u� v). Hence we have from the long exact sequence ofS�11 � S�12 � S�1 � S11 [ S12 � S�2 � S11 � S12



22 3 GENERATING FUNCTIONSthat the image of T (u � v) in H�(S�1 � S12 [ S11 � S�2 ; S�11 � S�12 ) iszero.The critical points of S1 + S2 are in a compact set. Hence we can chooseK such thatH�((S1 + S2)�+� \K; (S1 + S2)1 \K) �= H�((S1 + S2)�+�; (S1 + S2)1):Considering the inclusions7((S1 + S2)�+� \K; (S1 + S2)�1 \K)j1,! (S�1 � S12 [ S11 � S�2 ; S�11 � S�12 )and (S�1 � S12 [ S11 � S�2 ; S�11 � S�12 ) j2,! (S11 � S12 ; S�11 � S�12 )we get mapsT (u� v) 2 H�(S11 � S12 ; S�11 � S�12 )j�2�! H�(S�1 � S12 [ S11 � S�2 ; S�11 � S�12 )j�1�! H�((S1 + S2)�+� \K; (S1 + S2)�1 \K)�=�! H�((S1 + S2)�+�; (S1 + S2)�1)where j�1(T (u� v)) = 0.Hence T (u � v) is mapped to zero in H�((S1 + S2)�+�; (S1 + S2)�1).Consequently c(u� v; S1 + S2) � c(u; S1) + c(v; S2): 2Proof of proposition 3.8: Consider the commutative diagram7Here our notation hides the problem. S1 means S� for � large. (S1 + S2)�+�does not embed in S�1 � S�2 [ S�1 � S�2 but (S1 + S2)�+� \K does.



3.3 Invariants for Lagrangian submanifolds 23
(S1]S2)� �,! (S1 + S2)�# #(S1]S2)1 �,! (S1 + S2)1# ~� # �B �,! B � BThe Thom isomorphism T : H��q1�q2(B � B) ! H�((S1 + S2)1; (S1 +S2)�1) is given by Tu = ��u[� where � 2 H�((S1+S2)1; (S1+S2)�1) isa Thom class. The restriction of � to each �bre generates the cohomologyof this �bre. Hence ��(�) is a Thom class of ((S1]S2)1; (S1]S2)�1). Notethat u [ v = ��(u� v). Consequently��(��(u� v) [ �) = ��(��(u� v)) [��(�)= ��(��(u� v)) [��(�)We get a commutative diagramH�((S1]S2)�; (S1]S2)�1)  H�((S1 + S2)�; (S1 + S2)�1)" "H�((S1]S2)1; (S1]S2)�1)  H�((S1 + S2)1; (S1 + S2)�1)" T " TH��q1�q2(B)  H��q1�q2(B � B):If u� v is mapped to zero on the right hand side it is mapped to zero onthe left hand side. Consequentlyc(u [ v; S1]S2) � c(u� v; S1 + S2) = c(u; S1) + c(v; S2): 2Proposition 3.10 The value c(u; L) of the critical point of S does notdepend on the choice of the generating function S.Proof: It is clear that c(u; L) is independent of equivalence and addingof a constant. We only have to deal with stabilization. We may assumethat S1 and S2 are gfqi for L where S1 +Q = S2 with a quadrati form



24 3 GENERATING FUNCTIONSQ independent of the base point. We get by proposition 3.9 applied toB � pt: c(u; S1) = c(u� 1pt; S1 +Q) = c(u; S2) 2Corollary 3.11 Let u; v 2 H�(B). Thenc(u [ v; '(L)) � c(u; L) + c(v; '(0B)):This is corollary 3.6 in [V2]. 23.4 Capacities for symplectic di�eomorphismsLet H : R�R2n ! R be a Hamiltonian function with compact support inthe R2n{component. The Hamiltonian equations _'t(x) = �JH 0('t(x))de�ne the Hamiltonian 
ow 't. For t = 1 we abbreviate the time onedi�eomorphism by '1 = '.If H is time independent then every �xed point x = '(x) corresponds toa periodic orbit of the 
ow.We consider �', the graph of '. It is a Lagrangian submanifold of (R2n�
R
2n;�! � !).We can identify (R2n � R2n;�! � !) with (T �R2n; !) through the map� : (q; p; �q; �p) 7! �q + �q2 ; p+ �p2 ; �p� p; q � �q� : (2)Note that for the diagonal � � R2n � R2n we have �(�) = 0T �R2n .Hence �(�') coincides with the zero section outside a compact set sinceH is compactly supported. Considering R2n as the punctured sphereS2n n fPg, P the north pole, we get symplectic embedding T �R2n !T �S2n: Any di�eomorphism R2n ! S2n n fPg can be considered as achart of S2n. The associated chart of the cotangent bundle constitutesthe desired symplectic embedding T �R2n ! T �S2n. We can compactifythe image of �(�') by adding the point (P; 0).We thus get a Lagrangian manifold ~�' in T �S2n. This manifold is isotopicto the zero-section via ~' := �(id � ')��1 extended to T �S2n. This ~' isthe time one di�eomorphism of the Hamiltonian (0�H)��1.



3.4 Capacities for symplectic di�eomorphisms 25By the existence and uniqueness theorems ~�' has a unique generatingfunction quadratic at in�nity normalized such that the critical value corre-sponding to the pole is zero. To every critical point (x; v) of this gfqi therecorresponds a �xed point x of ': x = �1�(x; x) where �1 : T �S2n ! S2nis the projection map.De�nition 3.12 For 1 2 H0(S2n) and � 2 H2n(S2n),the orientationclass, we de�ne the capacities of symplectic di�eomorphisms to bec+(') = �c(1; ~�'); c�(') = �c(�; ~�'); 
(') = c+(')� c�('):The reason for the minus sign is to get a suggestive formulation for apositive Hamiltonian, see the next Proposition, part (vii): If ' 6= id isassociated to a Hamiltonian H � 0, then c+(') > 0 , c�(') = 0.There is a set of propositions we shall need to compute the capacities inthe proofs of theorem 5.4 and 6.1 later on.Proposition 3.13 Let ' and  be symplectic di�eomorphisms with com-pact support. The symplectic invariants c+, c� and 
 have the followingproperties:(i) c+(') � 0 and c�(') � 0 
(') = 0 () ' = id(ii) c+(') = �c�('�1)(iii) c+( ') � c+( ) + c+(')(iv) c�( ') � c�( ) + c�(')(v) c�( ') � c�( ) + c+(')(vi) c+( ') � c+( ) + c�(')(vii) Let  t be a conformal symplectic isotopy, i.e. we assume �t! = �(t)! for a di�erentiable function �(t) > 0. Assumethat  0 = id. We then have c�( t' �1t ) = �2(t)c�(').In particular we conclude that d( ; ') := 
( �1') de�nes a bi{invariantmetric on H0(R2n).Proof: These relations are proved in [V2] except for (v) and (vi), whichcan nevertheless be proved similarly to (iii): We have ~� ' = ~ ~�' andtherefore ~ ~�' = ~ ��' = (� � (id�  )��1)��' = �� ' = ~� ':



26 3 GENERATING FUNCTIONSWe thus have in view of corollary 3.11�c�( ') = c(1 [ u; ~� ')= c(1 [ u; ~ ~�') � c(1; ~�') + c(u; ~ (0B)) = c(1; ~�') + c(u; ~� )= �c+(')� c�( ):Finally, (vi) follows from (v) and (ii). 2Proposition 3.14 The following relations hold:(i) Let H1 � H2. For the associated time one di�eomorphisms '1; '2 wehave c�('1) � c�('2):(ii)Let  and ' be symplectic di�eomorphisms with compact support suchthat the support of ' is in U and '(U) \ U = ;. We then havec�(' ) = c�(') and c+( ) � 
('):See corollary 4.5 and proposition 4.6 in [V2]. 2We have two kinds of continuity.Proposition 3.15 (i) Let H1 and H2 be two compactly supported Hamil-tonians. Let '1 and '2 be the associated time one di�eomorphisms. IfjH1 � H2jC0 � � then we have j
('1) � 
('2)j � �. The same holds forc+ and c�.(ii) c+, c� and 
 are continuous on H0(R2n) for the C0{topology for sym-plectic di�eomorphisms.See proposition 4.14 and 4.15 in [V2]. 2Assume that ' is the time one di�eomorphism of a compactly supportedHamiltonian H. Let z be a point outside the support of H. ThenS(z; 0) = 0 where S is a gfqi for '. There exist critical points (x�; v) 2
R
2n � RN � S2n � RN of S such thatc�(') = �S(x�; v) = �S(x�; v) + S(z; 0)We have the following representation formula which shows that the ca-pacities are classical actions of certain paths.



3.4 Capacities for symplectic di�eomorphisms 27Proposition 3.16 If g� : [0; 1] ! S2n is a smooth path connecting zwith x+ (respectively x�) thenc�(') = Zg(t) pdq � Z'(g(t)) pdq = � Z't(x�) pdq �H dt! :Proof: This is proposition 4.2(3) in [V2]. Since the proof of the �rstequality is skipped in Viterbo's papers we perform it here. To simplifynotation we only proof it for c+ with x = x+. Let S be a gfqi for '. Denoteby ĝ a path from (z; 0) to (x; v) such that ĝ(t) 2 �S8 and i(ĝ(t)) = g(t).We have c+(') = �S(x; v) + S(z; 0) = �S(ĝ(1)) + S(ĝ(0))= � Z 10 < dS(ĝ(t))j _̂g(t) > dt:Consider the path 
̂(t) = (ĝ(t); dS(ĝ(t))) 2 T �(S2n � RN). Its tangentialis given by T 
̂(t) = (ĝ(t); dS(ĝ(t)); _̂g(t); d2S(ĝ(t)) � _̂g(t)):With the Liouville form �̂ = p̂dq̂ on T �(S2n � RN ) we havec+(') = � Z
̂ �̂ = � Z
̂�
̂0 �̂ = ZD̂ !̂where 
̂0 = (ĝ(t); 0), !̂ the symplectic form on T �(S2n � RN ) and D̂ adisc bounded by 
̂ � 
̂0 with the right orientation.Considering the symplectic reduction � : EH ! T �R2n we observe that~�' = ��' is the image of the manifoldf(x; v); dS(x; v)g(x;v)2T �(R2n�RN ) \ EHand 0T �R2n is the image of 0T �(R2n�RN ).For elements �1 and �2 in T �(R2n�RN ) we have !̂(�1; �2) = ~!(��1; ��2)where ~! is the symplectic form on T �R2n. Applying ��1 yields the fol-lowing formula on (R2n � R2n;�! � !) .c+(') = ZD(�! � !)8�S is the critical set along the �bers, see de�nition 3.1.



28 3 GENERATING FUNCTIONSIn this formula D is a disc bounded by 
 � 
0, the projection of 
̂ � 
̂0.We have that 
(t) = (g(t); '(g(t)) and 
0(t) = (g(t); g(t)).Indicating by �q and �p coordinates on the second R2n we concludec+(') = ZD(�! � !) = � Z
�
0 �pdq + �pd�q:Since 
0 does not give a contribution we havec+(') = Zg(t) pdq � Z'(g(t)) pdq:For the second equality of the proposition we are reduced to computationson R2n.To apply Stokes' theorem once more we consider � : (s; t) 7! 't(g(s)).The four paths 
1 : s 7! g(s) = �(s; 0)
2 : t 7! 't(x) = �(1; t)
3 : s 7! '1g(s) = �(s; 1)
4 : t 7! 't(z) = �(0; t) = zbound � i.e. 
1 + 
2 � 
3 � 
4 = @(�([0; 1]2)).We have c+(') = + R
1 pdq � R
3 pdq and R
4 pdq = 0.Furthermore we haveZ@([0;1]2)(�(s; t); t)�H(�(s; t); t)dt = Z(
2(t))Hdtsince the �rst and third path do not depend on t and the fourth path isconstant.We concludec+(') = Z@([0;1]2)(�(s; t); t)�(pdq �Hdt)� Z 10 (�(1; t); t)�(pdq �Hdt)= Z([0;1]2)(�(s; t); t)�d(pdq �Hdt)� Z 10 ('t(x); t)�(pdq �Hdt):



3.4 Capacities for symplectic di�eomorphisms 29It is left to show that R([0;1]2)(�(s; t); t)�d(pdq � Hdt) = 0. De�ne 	 =(�; t). We have(�(s; t); t)�d(pdq �Hdt) = i @	@s i @	@t (d(pdq �Hdt))(dt ^ ds):With @	@t = ( _'t; 1) = (XH('(t); 1) we computei(@	@t )(dp ^ dq � dH ^ dt) = �!(XH ; �)� dH(XH)dt+ dH � 1= �!(XH ; �)� !(XH ; XH)dt+ !(XH ; �)= 0: 2Furthermore we shall need later on the following proposition from [Bor]:Proposition 3.17 (Born) Let H(x; t) be a Hamiltonian function on[0; 1]� R2n with associated 
ow 't. We then havec+(') � supx;t H(x; t)c�(') � infx;t H(x; t)
(') � supx;t H(x; t)� infx;t H(x; t):Proof: We prove the statement for c+. For every k 2 N we can break the
ow up to get'1 = ('1 � '�11�1=k) � ('1�1=k � '�11�2=k) : : : ('1=k � I):By proposition 3.13 (iii) we havec+(') � kXi=1 c+('i=k � '�1i�1=k):One observes that  i := 'i=k � '�1i�1=k is the time one di�eomorphism ofHi(x; t) := 1kH �x; (i� 1) + tk � :



30 3 GENERATING FUNCTIONSWe �nd �xed points xi of  i such that for xi(t) :=  it(x) we havec+( i) = Z 10 12 < Jxi; _xi > dt+ Z 10 Hi(xi; t)dt� 12 Z 10 jjxijj � jj _xijjdt+ supHi� 12 sup(H 0i) Z 10 jjxijjdt+ supHi� 12 sup(H 0i) � sup(H 0i) + supHi� 12k2 sup jjH 0jj2 + 1k supHConsequently, c+(') � 12k sup jjH 0jj2 + supHand taking the limit k ! 1 the �rst claim follows. The second state-ment is proved in the same way and the third statement follows from thede�nition. 2From proposition 3.17 we conclude immediately that 
(') � E(') whereE is Hofer's diplacement energy from theorem 2.4.De�nition 3.18 For a compactly supported Hamiltonian H : [0; 1] �
R
2n ! R with associated 
ow 't and �xed point x of '1 the Hamilto-nian action isAH(x) = Z't(x) pdq �H dt = Z't(x)�12��H dt= Z't(x) 12 < �Jx; � > �H dt:The action spectrum is:A(H) := (Z't(x) ��H dt j't(x) is a �xed point of ') :



3.4 Capacities for symplectic di�eomorphisms 31Proposition 3.16 shows that the capacities are represented by the Hamil-tonian action of a Hamiltonian function. The Hamiltonian action is animportant, well{studied, subject in symplectic geometry. We have thefollowing propositions:Proposition 3.19 If H and K generate the same time one di�eomor-phism ' we have for a �xed point xAH(x) = AK(x):This is Lemma 5.1 in [HZ]. 2Remark : For '1, '2 with associated HamiltoniansH1 and H2 we consider' = '2 � '1. We can view ' as time two di�eomorphism for the Hamil-tonian H with H(t; x) = H1(t; x) for t < 1 and H(t; x) = H2(t � 1; x)for t > 1. In our context it does not matter that H is not continuous fort = 1. We have forx(t) = ('1t (x) for t 2 [0; 1]'2t�1('11)(x) for t 2 [1; 2]c�(') = � Z'1t (x�) ��H1 dt+ Z'2t ('11(x�)) ��H2 dt!= ��Z 20 x��� Z 10 H1(x(t); t) dt� Z 21 H2(x(t); t) dt� :Proposition 3.20 The action spectrum is compact and nowhere dense.This is proposition 5.8 in [HZ]. 2The previous proposition is a massive restriction of the values the ca-pacities c�(') can take. Together with the continuity of the capacity(proposition 3.15) the above proposition is a useful tool to compute ca-pacities as we will see in the proofs of theorem 5.4 and 6.1.On account of Proposition 3.14 (ii) there is an upper bound for c+(')with support in U given by 
(�), therefore the following capacity is c(U)is �nite for bounded open sets U .



32 3 GENERATING FUNCTIONSDe�nition 3.21 For open sets U we de�ne the capacityc(U) := supfc+(') j' has compact support in UgThis can be used to de�ne the capacity for arbitrary setsDe�nition 3.22 The capacity of an arbitrary set � � R2n isc(�) := inffc(U)jU open and bounded;� � UgProposition 3.23 c : �! c(�) 2 [0;1] de�nes a capacity in the senseof the axioms of de�nition 2.2.Proof: The monotonicity axiom is clearly satis�ed. In the next section weshow that the normalization axiom is satis�ed. As for the conformalitywe observe that to every ~' 2 H0(R2n) with support in U we �nd anassociated Hamiltonian ~H with support in U and a time independentHamiltonian H � ~H. We can deform H to a Hamiltonian with supportin �U via the homotopyHs(x) = (1� (1� �)s)2H((1� (1� �)s)�1x):and proveLemma 3.24 Denote by '� the time one di�eomorphism of H1. It holdsthat c+('�) = �2c('):Proof of lemma 3.24: If x(t) is a periodic orbit of ' then x�(t) = �x(t) isa periodic orbit of '�:� _x(t) = � _'t(x) = ��JH 0('t(x))= ��JH 0(��1�'t(x)) = �JH 0�(�'t(x))Considering the Hamiltonian action we get�H�(�x) = Z (�!(�x(t); � _x(t))�H�(�x(t))) dt= ��2 Z (�!(x(t); _x(t))�H(x(t))) dt= ��2�H(x)



3.5 Viterbo's capacity of the sphere 33Since the action spectrum is compact and nowhere dense and since thecapacity depends continuously on the Hamiltonian we have c+('�) =��2c+('). 2The proof of proposition 3.23 is now easy: Since '$ '� de�nes a one toone correspondence between symplectic di�eomorphisms having supportin U and in �U , we have c(�U) = �2c(U). The proof of proposition 3.23is �nished. 2In theorem 5.4 we show that for strictly convex hypersurfaces � andbounded sets U with @U = � we have c(U) = c(�). In the next sectionwe give an explicit construction for the special case � = S2n�1 and showthat c(S2n�1) = c(B(1)) = � . Thus Viterbo's capacities are non trivialand normalized.3.5 Viterbo's capacity of the sphereThis section gives an explicit construction to prove that the Viterbo{capacity of the sphere is �.For the disk of radius r we have:Proposition 3.25 (Viterbo) c(B2n(r)) = �r2:We prove this proposition together with the following proposition:Proposition 3.26 c(S2n�1(r)) = �r2.Furthermore we show that the capacity of the symplectic cylinderZ2n(r) = f(x1; : : : ; xn; y1; : : : ; yn) 2 R2n j x21 + y21 � r2gis �r2 as well.Proof: We only consider r = 1. Denote by B(1; 1) the disc of radius 1,centered at (1; 1).We �rst construct a Hamiltonian h such that for its time one di�eomor-phism ' we have '(B(1; 1)) \ (B(1; 1)) = ;



34 3 GENERATING FUNCTIONSand 
(') � � + � so that by proposition 3.14 the capacity of the disc isestimated by c(B(1; 1)) � �r2.Consider f(y) = 2p1 + �� (y � 1)2. For a function F with F 0 = f andF (0) = � we have F (2) = � + ~�. De�neh(x; y) = 8><>:F (y) on [0; 2]20 on R2 n [��; 2 + �]2smooth in betweensuch that @h@y (x; 2 + �=2) = 0 for x 2 [0; 2] and h(x; y) � 0. We haveh(x; 2 + �=2) = � + ~�.The only 1-periodic orbits of 't are the equilibrium points (x; 2 + �=2)where the derivative of h vanishes. By de�nition of the capacities c+(') =� + ~� and c�(') = 0. Since � and ~� are arbitrary small we concludec(B(1; 1)) � �.We next show that for the symplectic cylinder Z2n of radius 1 we havec(Z2n) � �.For a bounded subset U � Z2n of diameter at most d consider the timeone di�eomorphism ofH(x1; : : : ; xn; y1; : : : ; yn) = g(j(x2; : : : ; xn; y2; : : : ; yn)j) � h(x1; y1)where g : R ! R is a smooth function with slope smaller than 2� �(2R)such that g = (1 on [0; 2R]0 on [3R;1[where R > � and R > d.The time one di�eomorphism  of H satis�es  (U)\U = ;, and the onlyone periodic orbits are as above equilibrium points having the action �+�.We conclude by de�nition of the capacity that c(Z2n) � �.We next prove that c(B2n(1)) � �.Given � 2]0; 1[ we de�ne a function g : (0;1)! R:g�(s) := 8<: 0 for s > 1 + �; s < 1� �2�(1� �) for s = 1a�ne linear in between
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1 + ��1� � �1 + � 1� �

2�(1� �)2�(1 � �)
R2nFigure 1: H�De�ne H�(x) = g�(jxj) (see �gure 1).In the linear part of H� the slope is �2�(1��)� . Since H� is not smooth wecan consider the Hamiltonian equations in the linear parts onlyThe length of a periodic orbit of the Hamiltonian 
ow is 2�njxj. We areinterested in one periodic orbits. Hence the length of the orbit has to beequal to the slope. The condition we get is thus:2�(1� �)� = 2n�(1� b); b 2]0; �[;i.e. 1=n 2 �(1� �)�1� � = � ; (1 + �)�1� � � n� �1� �� =: I:We �nd a sequence �n such that there are no non constant 1{periodicorbits for 'H�n :For every n 2 N we take �n = 1n+1 , so 1n+1 =2 I andn = 1� � 1 () 1n = �1� � =2 I:Furthermore we have to prove: 1n�1 � (1+�n)�n1��n () 1�2�n � 1��n(1+�n) ()1 � �n � 2�2n � 1 � �n which is true, so that we have found the desiredsequence.For every � in our sequence we will construct a smooth version of H�(which we will call H�, too) that has no periodic orbits x(t) with�AH�(x) := Z 10 1=2 < Jx; _x > dt+ Z 10 H�(x(t))dt 2]0; � � �[



36 3 GENERATING FUNCTIONSwhere �! 0 as � ! 0. Since the 
ow 'H� of H� is non trivial, c+('H�) >0. Since c(S2n�1) � c(B2n) = � this will prove c(S2n�1) = �.The smoothened version of g� di�ers from the original one in the followingfour regions (see �gure 2). Here a and b are real numbers with a << �2=2,b = 2�a1��� .1. ]1� �; 1� � + a[ with g0� > 0, g�(1� � + a) = b2. ]1� a; 1[ with g0� > 0, g�(1� a) = 2(1� �)� � b3. ]1; 1 + a[ with g0� < 0, g�(1 + a) = 2(1� �)� � b4. ]1 + � � a; 1 + �[ with g0� < 0, g�(1 + � � a) = b

1� � 1 + �

2�(1� �)

1 4.
3.2.

1. Figure 2: g�, smoothened
For a 1{periodic solution we must havejH 0�(x)j = jg0�(jxj)x=jxj j = jg0�(jxj)j = n2�jxjfor some n > 0 (the solution is not constant).



3.5 Viterbo's capacity of the sphere 37Region 1: Here we have�AH�(x) = �(Z 1=2 < �Jx; _x > � Z H�(x(t))dt)= Z 1=2 < Jx;�Jg0�(jxj)x=jxj > + Z H�(x(t))dt= Z �1=2 < x; g0�(jxj)x=jxj > + Z H�(x(t))dt= �g0(jxj)jxj+ d= �n�jxj2 + d < 0with d 2 [0; b].Region 2: �AH�(x) = �n�jxj2+2�(1� �)� d with jxj = 1� e, e 2 [0; a].For n = 1 we have �AH� = ��(1� e)2+2�(1� �)�d > �� �. For n � 3we have �AH� < 0.For n = 2: �AH�(x) = �2�(1� e)2 + 2�(1� �)� d= 2�(2e� e2 � �)� d < 0Region 3: Here g0� < 0. Hence g0� = �2n�jxj.�AH�(x) = n�jxj2 + 2�(1� �)� d > 3� � �� � d > 2�.Region 4: �AH�(x) = n�jxj2 + d > � + �.Hence 'H� has no �xed point with Hamiltonian action in the interval]0; � � �[. Consequently c+('H�) � � � �. Taking the limit � ! 0 (and�! 0 ) we get the desired estimate. 2



38 4 THE MASLOV INDEX4 The Maslov indexIn the last section we associated to a symplectic di�eomorphism ' theLagrangian submanifold ��(') and found a generating function S for��('). To �xed points x and y of ' there correspond critical points (x; v)and (y; w) of S.In [V1] C. Viterbo observed that the di�erenceind d2S(x; v)� ind d2S(y; w)is independent of the particular generating function chosen and relatedto the Conley{Zehnder index de�ned in [CZ].Theret in [Th] used this index in the more general setting of paths ofLagrangians. He proved directly that this index satis�es the axioms of aMaslov index as de�ned by Cappell, Lee and Miller in [CLM].In fact there are several possibilities to generalize the Maslov index asde�ned in [A]. In appendix B we compare some indices.In this section we describe Theret's `generating function approach' to theindex and prove a `generic formula'.4.1 Linear LagrangiansLet L � T �Rn be a Lagrangian and S : Rn � RN ! R a generatingfunction for L. Remember that �S is the critical locus of �bre criticalpoints of S and iS : �S ! T �Rn is a Lagrangian immersion such thatiS(�S) = L.We need two preliminary observations.Proposition 4.1 Let S : Rn � RN ! R be a generating function forL � R2n. If (x; v) 2 �S with iS(x; v) = z 2 L then for (r; s) 2 Rn � RNQ : Rn � RN ! R ; (r; s) 7! d2S(x; v):(r; s):(r; s)is a generating function for TzL.Proof: TzL is the image ofdiS(x; v) : T(x;v)�! TzR2n:



4.1 Linear Lagrangians 39We have to describe T(x;v)� and diS(x; v). Observe that dQ(r; s):(~r; ~s) =2d2S(x; v):(r; s):(~r; ~s)We have de�ned �S to be�S = f(x; v) j @S@v (x; v) = 0g= f(x; v) j dS(x; v):(0; ~s) = 0; 8~s 2 RNg:HenceT(x;v)� = f(r; s) j d2S(x; v):(r; s):(0; ~s) 8~s 2 RNg = f(r; s) j @Q@s = 0g:Furthermore iS(x; v) = (x; @S@x (x; v)) = dS(x; v):(:; 0). HencediS(x; v)(r; s) = (r; d2S(x; v):(r; s):(:; 0)) = (r; @Q@r ): 2Denote by �(n) the set of all Lagrangian subspaces of (R2n; !) with thestandard symplectic form ! =< J �; � >. The Maslov index will associateto every path 
 : [a; b]! �(n) an integer.To this end we need quadratic generating functions (generating forms)for 
(t). The problem is that our existence and uniqueness theorems areproved so far for paths of Lagrangian submanifolds coinciding with thezero section outside a compact set and starting from the zero section.Since �(n) is path connected we can introduce a new path ~
 : [c; b] !�(n), c < a with ~
(c) = Rn � f0g and ~
j[a;b] = 
.By theorem 3.4 we �nd a path of generating functions for ~
(t). Theconstruction in [S] shows that these functions are in fact quadratic formsQt : Rn � RN ! R, (x; v) 7! Qt(x; v) generating ~
(t).Proposition 4.2 The di�erence ind Qb � ind Qa is well de�ned.Proof: The proof of theorem 3.5 works in the case of linear Lagrangiansinstead of Lagrangians coinciding with the zero section outside a compactset. Consequently Qt is unique up to equivalence and stabilization.Instead of proving this and since we only need uniqeness of the di�erenceof the indices we proof the proposition by using theorem 3.5.



40 4 THE MASLOV INDEXWe choose a HamiltonianH such that for its 
ow we have 't(Rn�f0g) =
(t). We �nd a cut o� function � : R2n ! R such that for a ball of radiusR we have �(B(R)) = 1 and �(R2n n B(2R)) = 0 with R so great thatfor the 
ow ~' of ~H = � �H we still have ~'t(0) = 't(0) and T0~'t = T0't.Let ~St be a family of generating functions for ~'t(Rn � f0g).Let ~S 0 be a second family of generating functions for ~'t(Rn � f0g). Weobserve that due to the uniqueness theorem the indices of d2 ~S(x; v) andd2 ~S 0(x; v0) at points which generate the same point in L only di�er bythe index of a quadratic form with which we have stabilized. This doesnot a�ect the di�erence of two indices. Consequently our de�nition isindependent of the particular gfqi for ~'(Rn � f0g) chosen.We now look for the relation between Qt and ~St. We can homotop from
(t) to ~'t(Rn � f0g) by considering s � �H.During the homotopy the parts of the generating functions generatingpoints in B(R) don't need to change. Outside B(R) the generating func-tions change. In particular we might have to stabilize with a quadraticform Q and then compose with a �bre preserving di�eomorphism. Theseoperations do not a�ect the di�erence of indices of critical points (x; v)with iS(x; v) 2 B(R).Consequently, given Qt and two gfqi S1 and S2 corresponding to two cuto� functions we have for points generating the same point in B(R) thatindQt = ind ~S1t � indQ1 = ind ~S2t � indQ2. This shows that our de�nitionis independent of the cut o� function chosen.A similar argument shows that it is independent of the particular Qtchosen: For two paths Qt and Q0t of generating forms we have with thesame cut o� function indQ1t + indQ1 = ind ~St = indQ2t + indQ2:) 24.2 The Maslov index for a path of Lagrangian vec-tor spaces.In view of proposition 4.2 we de�neDe�nition 4.3 For a continuous and piecewise di�erentiable path 
 :[a; b] ! �(n) of Lagrangian subspaces in R2nthe Maslov index �V (
) isthe integer de�ned as �V (
) = ind Qb � ind Qa



4.2 The Maslov index for a path of Lagrangian vector spaces. 41where Qt is a path of generating forms for 
(t).Remarks: (i) The subscript V refers to `Viterbo' and indicates that thisis not the standard index.(ii) �V (
) measures with multiplicities how often 
 intersects the distin-guished horizontal Lagrangian plane Rn�f0g. The form Qt is non degen-erate in the �bers since T @Q@v has maximal rank, see de�nition 3.1. Theindex indQt can only change if rank(dQ) < n+k, that is if rank(@Q@x ) < n.This is equivalent to dim(
(t) \ Rn � f0g) > 0.The Maslov index has the following properties:Proposition 4.4 �V (
) satis�es(i) A�ne scale invariance:For k > 0 and l � 0 consider the map  : R! R de�ned by  (t) = kt+ l.Then �V (
) = �V (
 �  ):(ii) Deformation invariance:If � : (s; t)! �(s; t) is a parametrized surface in �(n) then�V (�(�; 1))� �V (�(�; 0)) = �V (�(1; �))� �V (�(0; �)):(iii) Path additivity:If 
 : [a; c]! �(n) and c > b then�V (
) = �V (
j[a;b]) + �V (
j[b;c])(iv) Symplectic additivity:Let 
 : [a; b]! �(n) and � : [a; b]! �(m). For the direct sum
 � � : [a; b]! �(n+m) we have�V (
 � �) = �V (
) + �V (�)(v) Normalization:De�ne 
0 : [��; �]! �(2) by the formula
0(t) = R eit = f(r cos t; r sin t) j r 2 Rg;



42 4 THE MASLOV INDEXthen �V (
0)j[��=4;0] = �1�V (
0)j[0;�=4] = 0�V (
0)j[��=4;�=4] = �1�V (
0) = �2:Proof: (i),(iii), (iv) are clear. To prove (ii) we consider a family Qs;t ofgenerating forms for �(s; t). We compute the index along the path 
1which is de�ned to be �(s; 0) followed by �(1; t). By path additivityindQ1;0 � indQ0;0 + indQ1;1 � indQ1;0 = indQ1;1 � indQ0;0:We obtain the same result by considering the path 
2 which is �(0; t)followed by �(s; 1). This proves (ii). As for (v) we only have to observethat a generating form for 
j[��=4;�=4] and for 
j[3�=4;5�=4] isQt(x) = 12 sin tcos tx.Since 
(t) has intersection with Rn�f0g only for t = 0 and � this yieldsthe result. 24.3 The Maslov index for a path of symplectic au-tomorphismsConsider a linear symplectic automorphism � 2 Sp(n). Remember thatthe map � from section 2 identi�es (R2n � R2n; (�! � !) with T �R2n.Hence �(�(�)) is a linear Lagrangian subspace in T �R2n and so has agenerating form Q. In the following Q is called a generating form for �though Q generates, more preciselyL = f�(x; �(x)) j x 2 R2ng= f�(I � �)��1(x; 0) j x 2 R2ngFor a path � : [0; 1]! Sp(n) we de�ne the Maslov index�V (�) = �V (��(�)):This Maslov index has the properties of a�ne scale invariance (i), defor-mation invariance (ii), path additivity (iii) and symplectic additivity



4.3 The Maslov index for a path of symplectic automorphisms 43(iv) from proposition 4.4. As for the normalization we get: Consider thepath of symplectic automorphisms�0 :]� �; �[! � cos t � sin tsin t cos t � :We compute with x = (q; p) and �0t (x) = (�q; �p).(q + �q2 ; p+ �p2 ; �p� p; q � �q)= (12(q(1 + cos t)� p sin t); 12(p(1 + cos t) + q sin t);p(1� cos t) + q sin t; q(1� cos t) + p sin t)Changing the coordinatesz1 = q(1 + cos t)� p sin t2 and z2 = p(1 + cos t) + q sin t2 (3)we get��(�0(t)) = �(z1; z2; 2 sin t1 + cos tz1; 2 sin t1 + cos tz2) j (z1; z2) 2 R2n�whose generating form is given bysin t1 + cos t(x2 + y2):One computes: �V (�0j[��=4;0]) = �2�V (�0j[0;�=4]) = 0�V (�0j[��=4;�=4]) = �2The Lagrangian plane ��(�(t)) has non trivial intersection with R2n�f0gif and only if �(t) has an eigenvalue 1. Since the above path �0 has aneigenvalue 1 only for t = 0 we conclude for the whole loop�V (�0j[��;�]) = �2:We next elaborate on the relation between the eigenvalues of �(t) and�V (�) for arbitrary loops of symplectic automorphisms.



44 4 THE MASLOV INDEXDe�nition 4.5 With � 2 Sp(n) we associate the quadratic form q�(x) :=!(x; �x) and de�ne the integer ind(�) := ind q�.Remark: The symmetric bilinear form associated to q� isb�(x; y) = 1=2(!(x; �y) + !(y; �x))= 1=2(< Jx; �y > + < Jy; �x >)= 1=2(< x;�J�y > + < �TJy; x >)so that b� is given by �TJ � J� where �T denotes the transposed map.Proposition 4.6 Assume � 2 Sp(n), then:(i) If P 2 Sp(n) and  := P�1�P then ind ( ) = ind �(ii) If � does not have an eigenvalue �1 and Q : Rn ! R is a generatingform for � then Q is conjugated to q�, i.e. there exists a matrix A suchthat ATQA = q�. Hence ind Q = ind �.(iii) If � : [a; b] ! Sp(n) is a path such that (Ker(�(t)2 � I)) is constantthen ind (�(1)) = ind (�(0)). This is, in particular, the case if �(t) neverhas the eigenvalues �1.(iv) If � : [a; b]! Sp(n) is a path such that �(t) never has an eigenvalue�1 then �V (�) = ind (�(1))� ind (�(0)):Proof: (i) q (x) = !(x; P�1�Px) = !(Px; �Px) = q�(Px).(ii) If �1 is no eigenvalue of � then�(�) \ f(z;�z) j z 2 R2ng = f0g:Consequently �(�(�)) \ f0g � Rn = f0g:�(�(�)) therefore projects well on Rn � f0g so that we can write�(�(�)) = f(z; Az) j z 2 R2ng



4.3 The Maslov index for a path of symplectic automorphisms 45with a symmetric matrix A. We have that Q(z) := 1=2 < z;Az > isa generating form for �. De�ning x = (q; p) and �(q; p) = (�q; �p) andapplying the coordinate change z = ( q+�q2 ; p+�p2 ) we get that< (q + �q2 ; p+ �p2 ); (�p� p; q � �q) >is conjugated to < z;Az >. We calculate< (q + �q2 ; p + �p2 ); (�p� p; q � �q) >= < q + �q2 ; �p� p > + < p+ �p2 ; q � �q >= < q; �p > � < �q; p >= !(x; �x) = q�(x)(iii) The index ind (�(t)) can only change where Ker(�(t)TJ � J�(t))changes dimension. We computedim (Ker(�(t)TJ � J�(t))) = dim (Ker(�(t)TJ�(t)� J�(t)2))= dim (Ker(J � J�(t)2)) = dim (Ker(�I + �(t)2))(iv) is a consequence of (ii). 24.3.1 A Generic formulaWe de�ne Spk(n) := f� 2 Sp(n) j dim ker(�� I) = kgProposition 4.7 Let �(t) : [0; 1] ! Sp(n) be a path such that there isonly a �nite number of times 0 < t1 < : : : < ti < : : : < tN such thatdet(�(ti) � I) = 0. Assume that at these points det(�(ti) + I) 6= 0. If�(1) 2 Spk1(n) we assume _�(1); _�(0) =2 TSpk(n) for all k 6= 0.Then it holds that�V (�) = ind �(�)� ind �(0) + �Nk=1(ind �(tk+�)� ind �(tk��))+ind �(1)� ind �(1� �)for � > 0 small.



46 4 THE MASLOV INDEXProof: By path additivity�V (�) = �V (�)j[0;�] + �V (�)j[�;t1��]+ N�1Xk=1 ��V (�)j[tk��;tk+�] + �V (�)j[tk+�;tk+1��]�+�V (�)j[tN��;tN+�] + �V (�)j[tN+�;1��] + �V (�)j[1��;1]:On the intervals [�; t1 � �] and [ti + �; ti+1 � �] and [tN + �; 1 � �] thereoccurs no eigenvalue -1 for �(t). Hence these intervals don't contributeto the Maslov index. On the other intervals we use proposition 4.6, (iv)to compute the indices. 2The crucial point is that every path can be deformed to such a path inview of the next result.Proposition 4.8 Every path �(t) : [0; 1] ! Sp(n) can be continuouslydeformed into a path satisfying the hypothesis of proposition 4.7 are sat-is�ed in such a way that the Maslov index remains constant.Proof: We �rst need some facts about the structure of Sp(n). Let �(R2n�
R
2n) be the set of all Lagrangian subspaces in (R2n�R2n;�!�!). De�ne�0 = fL 2 �(R2n � R2n) jL \ f0g � R2n = 0gWe de�ne a map Sp(n)! �0 by � 7! �(�). Clearly this map is injective.It is also surjective: Denote by �1 : R2n � R2n ! R2n the projectionon the �rst factor. Since L 2 �0 projects well on R2n � f0g, for everyx 2 R2n there is a unique vector (x; Px) 2 L. Thus we have constituteda linear map P : R2n ! R2n. This map is symplectic. Indeed, since L isLagrangian we have for every x; y 2 R2n0 = (�! � !)((x; Px); (y; Py)) = �!(x; y) + !(Px; Py):Now Spk(n) is mapped onto�k = fL 2 �(R2n � R2n) j dim L \� = kg:This is a submanifold of codimension k(k + 1)=2 in �(R2n � R2n), see[GS], proposition IV.3.5.



4.4 The Maslov index for a periodic orbit 47This shows that for 0 < t < 1 we can deform � such that it intersects noneof the Spk(n) with k > 1 and Sp1(n) only transversally. If �(1) 2 Spk1(n)we can assume _�(1) =2 TSpk(n) for all k 6= 0 and the same for �(0).We now prove that we can avoid the eigenvalue �1 when there is aneigenvalue 1.Let �(t) 2 Spk(n). In a basis it can be written as0BB@ 1 �0 1 0 : : : 00 1 �0 1 : : : 0. . . . . . . . . . . . . . .0 0 0 P 1CCAwith P 2 Sp0(n� k). As above the setsSp�l (n) = f� 2 Sp(n) j dim ker(�+ I) = lghave codimension l(l+1)=2 in �(R2n�R2n). Thus there is a ~P arbitrarilyclosed to P without eigenvalue �1 and we can deform �(t) such that itcrosses Sp(k) with det(�(tk) + I) 6= 0. 24.4 The Maslov index for a periodic orbitWe consider a path ' : [0; 1]! Symp(n), t 7! 't of (non linear) symplec-tomorphisms and a periodic orbit 't(x). De�ne the Maslov index of theperiodic orbit by �V (x) = �V (d't(x)):The most important example is given by the 
ow 't of a Hamiltonianvector �eld. In this case d't(x) solves the linearized Hamiltonian equa-tions: ddt(d't(x)) = �JH 00('t(x)):d't(x) ; d'0(x) = Id:



48 4 THE MASLOV INDEXProposition 4.9 Let 't be a path of symplectomorphisms with '0 = I.Let St : R2n � Rk ! R be a family of gfqi for 't and z = (x; v) be thecritical point of S1 associated to a �xed point x of '1. Let Q1 be thequadratic form to which S1 is equal `at in�nity'. Then�V (x) = ind d2S(z)� ind Q1:Proof: De�ne  t := �(I � 't)��1. Then St generatesLt = f t(x; 0) j x 2 R2ng = ��('t):We de�ne the path z(t) =  t(x; 0) = �(x; 't(x)). We �nd a path � :[0; 1]! R2n�Rk such that �(t) 2 �St and iSt�(t) = z(t) and �(1) = (z; v).By proposition 4.1, d2S(�(t)) generatesTz(t)Lt = Tz(t)(��('t)) = ��(d't(x)):Hence by proposition 4.9�V (x) = ind d2S(z(1))� ind d2S(z(0)):In the de�nition of generating functions we assumed that outside a com-pact set S is equal to a quadratic form Q1. Since 't = I outside acompact set Q1 generates the zero section. Since '0 = I the function S0generates the zero section as well.We choose a point x1 outside the support of ' and a smooth path g(s)connecting (x1; 0) with z(0) = (x; v) such that g(s) is in the critical locus�S0 . Since S0 generates the zero section we see that d2S0(g(s)) generatesthe zero section. We have dim(Kerd2S0(g(s))) = dim((��(�)) \ R2n �f0g) = 2n. Consequently, the dimension of the kernel is constant, andthe index of d2S0(g(s)) does not change.This proves ind d2S0(x; v) = ind d2S0(z(0)) = ind Q1 2



495 Viterbo's capacities for strictly convexhypersurfacesA smooth closed hypersurface � is called strictly convex if it has positivesectional curvature. There exists a strictly convex set U such that @U =�. For simplicity we assume that 0 2 U .Hofer, Wysocki and Zehnder in [HWZ1] de�ned a generalized Conley{Zehnder index. In [HWZ2] they considered a strictly convex energysurface � and a Hamiltonian function h such that h�1(1) = � andh(rx) = r2h(x). They gave bounds on the index for periodic orbits asso-ciated to the Hamiltonian 
ow of h.In section 5.1.2 we do the same for Viterbo's index. In section 5.1.3 wegeneralize this to G � h with a smooth function G. In 5.2 we shall usethese results in order to prove that c(�) = c(U).5.1 Maslov indices5.1.1 Strictly convex hypersurfacesLet � be strictly convex.From appendix A we know that associated to � there is a characteristicline bundle L� ! �, L� � T� de�ned byL� = f(x; �) 2 T� j!(�; �) = 0 for all � 2 Tx�g:This gives an integrable distribution on � called the characteristic folia-tion. We denote by L�(x) the leaf through x 2 �.Since H 0?T� we have that � = JH 0 2 T�. For � 2 T� we compute!(JH 0; �) =< �H 0; � >= 0:This shows that JH 0 2 L�. Hence the orbits of the 
ow associated to Hare the leaves of the characteristic foliation. Furthermore�x(JH 0) = 1=2 < Jx; JH 0 >= �1=2 < x;H 0 >6= 0since � is strictly convex. Consequently �jTx� 6= 0 for all x 2 � and�x = ker �xj� is a (2n � 2){dimensional subspace on which ! is nondegenerate. So � ^ !n�1 is a volume form on �. By de�nition A.1 thatmeans that � is of restricted contact type.



50 5 STRICTLY CONVEX HYPERSURFACES5.1.2 The indices for Hamiltonians with H 00 de�niteProposition 5.1 Let H : R2n ! R be a time independent Hamiltonianwith H�1(1) = �. Let 't be the associated 
ow.For a periodic orbitx(t) = 't(x) with d'1(x) 2 Spk(n) we havei) �V (x) � 2n if H 00 is positive de�nite for all x 2 �ii) �V (x) � �k if H 00 is negative de�nite for all x 2 �.Proof of part i) We consider paths d't(x) =: �(t) of symplectic matrices.Since _�(t) = �JH 00:�(t) () H 00 = J _�(t)(�(t))�1the small perturbations leading to the formula in section 4.3.1 do nota�ect the fact that H 00 is positive de�nite. The Taylor series of �(t)begins with�(t+ �) � �(t) + � _�(t) = �(t)� �JH 00d't(x) = �(t)� �JH 00�(t);neglecting terms of order O(�2). From _�(0) =2 TSpk(n) we deduceind �(�)� ind �(0) = = ind (I � �JH 00)� ind (I) = ind (I � �JH 00)def= ind ((I � �H 00JT )J � J(I � �JH 00))= ind (�2�H 00) = 2nWe now consider the indices for t = tk with tk < 1. We abbreviate�(tk) = �. Due to the deformations the eigenvalue 1 has multiplicity 1and no eigenvalue �1 occurs.We consider the 
ow of the eigenvalues of the symmetric operator T (t) =�(t)TJ � J�(t). Using Kato's perturbation theory, [K], we observe thatthere is a di�erentiable function � : [tk � �; tk + �] ! R where �(t) is aneigenvalue of T (t) and �(tk) = 0. (Theorem II.6.1 in [K]). We have thatind �(tk + �)� ind �(tk � �) = �1 if �(tk + �) > 0ind �(tk + �)� ind �(tk � �) = 1 if �(tk + �) < 0



5.1 Maslov indices 51We have to show that for H 00 > 0 the second case occurs. The �rstcoe�cient in the Taylor expansion of �, giving the sign of �(�) is givenby formula 2.32 in paragraph II.2 in [K]:�(1) = tr (T (1)P ) (4)where T (1) is the �rst element in the Taylor expansion of T (t) and P isthe projection onto the zero eigenspace of T (tk).We have �(tk + �)TJ � J�(tk + �)= (�� �JH 00�)TJ � J(�� �JH 00�) +O(�2)= �TJ � J�� �((�TH 00JT )J � JJH 00�) +O(�2):Consequently T (1) = ��TH 00 �H 00�:We choose a basis in which the matrices � and P take the form� = � 1 �0 1 00 � � and P = � 1 00 0 00 0 � : (5)We compute:tr T (1)P = tr ((��TH 00 �H 00�)P )= tr (P (��TH 00)�H 00�P )= tr ��� 1 00 0 00 0 �H 00 �H 00� 1 00 0 00 0 � � < 0since H 00 is positive de�nite.If 1 is an eigenvalue of �(1) with multiplicity k, then as in proposition 4.8it has no eigenvalue �1. Perturbation theory provides us with k functions�j : [1 � �; 1] ! R with �k(1) = 0 and k functions �j : [1 � �; 1] ! R2nsatisfying T (t)�j(t) = �j(t)�j(t). We may assume that all the �j(t) aredi�erent for t 6= 1.



52 5 STRICTLY CONVEX HYPERSURFACESFormula 4 is valid for an eigenvalue of multiplicity 1. Here we have touse the reduction process of paragraph II:2:3 in Kato, [K]. By formulaII.2.40, �j(1� �) = 0� ��(1)j +O(1 + �);with � > 0. The coe�cient �(1)j is given by PjT (1)Pj where Pj is theprojection onto R � �j(1). We choose a basis as in formula 5 and concludethat �j(1� �) < 0 and henceind �(1)� ind �(1� �) = 0:Proof of part ii) Considering the spectral 
ow as in i) we �ndind �(�)� ind �(0) = 0ind �(tk + �)� ind �(tk � �) = �1ind �(1)� ind �(1� �) = �k: 25.1.3 More indicesWe can also compute the index for periodic orbits associated to Hamil-tonians which are not de�nite but of the form H = g(ph) where h is thesquare of the Minkowsky functional m(x) = inff� j x 2 �Ug. To this endwe need some preparations.De�ne h = m2 then hj� = 1 and h(rx) = r2h(x). For x 6= 0 we haveh00(x) > aI with a > 0.Di�erentiating h(rx) = r2h(x) with respect to r one sees that< h0(rx); x >= 2rh(x) () < h0(rx); rx >= 2r2h(x) = 2h(rx):Consequently, < h0(x); x >= 2h(x):Di�erentiating this equation with respect to x one sees that< h00(x)�; x > + < h0(x); : >= 2 < h0(x); � > :



5.1 Maslov indices 53We have h00(x):x = h0(x):We now consider the Hamiltonian function H(x) = g(ph(x)) = g(m(x))where g : R ! R is a C2{function with g(1) = 1 and g0(1) 6= 0. Forx 2 � = H�1(1) = h�1(1), H satis�es the equations< x;H 0 >=< x; g0 12phh0 >= g0(1) (6)andH 00 = g00 14h < h0; � >< h0; � > +g0(� 14h3=2 ) < h0; � >< h0; � > +g0 12phh00(7)and, since h = 1H 00 = g00 14 < h0; � >< h0; � > +g0(�14) < h0; � >< h0; � > +g012h00 (8)H 00:x = g00 12ph < h0; � > : (9)De�ne the vector �eld X(x) := � 1g0(1)JH 0(x), then X(x) 2 L�, the char-acteristic line bundle, de�ned in appendix A.Proposition 5.2 With �x = ker �xj� and the above vector �eld X(x) weconclude that span(X(x); x)� �xis a symplectic orthogonal splitting of TxR2n which is invariant underd't(x).Proof: !(X(x); x) = < J(� 1g0(1)JH 0(x)); x >= 1g0(1) < H 0(x); x >= 1 (by equation 6).



54 5 STRICTLY CONVEX HYPERSURFACESFor � 2 � we have !(x; �) = �x(�) = 0;and since H 0?Tx�!(X(x); �) = � 12g0(1) < H 0(x); � >= 0:This shows that we have a symplectic orthogonal splitting. It remainsto show the invariance under d't(x). Since 't is symplectic we have!(d't�; d't�) = !(�; �). Therefore, L� and hence X(x) is invariant underd't(x).We want to show �x 2 �x ) d't(x)� 2 �'t(x)which is equivalent to!(�; �) = 0 for all � 2 Tx�) !(d't(x)�; �) = 0 for all � 2 T't(x)�:Since '�t! = ! we only need to show that� 2 Tx� () d't(x)� 2 T't(x)�which holds since 'tj� : �! � is a di�eomorphism.It is left to show that d't(x):x 2 span('t(x); X('t(x))). Since we havethe symplectic orthogonal splitting of T't(x)R2n it is enough to show that!(d't(x):x; ~�) = 0 for all ~� 2 �'t(x)() !(x; d'�1t (x):~�) = 0 for all ~� 2 �'t(x)() !(x; �) = �x(�) = 0 for all � 2 �x 2In the special case H(x) = h(x) we have_'t(x) = �JH 0('t(x)) = �JH 00('t(x)):'t(x)We remember that d't(x):x is a solution of the linearized Hamiltonianequations



5.1 Maslov indices 55ddt(d't(x)):x = �JH 00('t(x)):d't(x):x ; d'0(x):x = x:We see that 't(x) and d't(x):x solve the same di�erential equation. Since'0(x) = x = d'0(x):x, we have 't(x) = d't(x):xWe are now ready to compute the indices.Proposition 5.3 Let g : R ! R be a function with g(1) = 1. Let 't bethe 
ow associated to the Hamiltonian H = g(ph). For a 1-periodic orbitx(t) = 't(x) of the 
ow with d'1(x) 2 Spk(n) we havei) �V (x) � 2n if g0(1) > 0 and g00(1) > 0ii) �V (x) � �k if g0(1) < 0 and g00(1) < 0iii) �V (x) � 2n� 1 if g0(1) > 0 and g00(1) � 0iv) �V (x) � �k + 1 if g0(1) < 0 and g00(1) � 0Proof: Parts i) and ii) are special cases of proposition 5.1.At �rst we observe that if we consider the Hamiltonian cH(x) with c > 0we get the same periodic orbits. If x is a �xed point of '1 then 'ct(x) is aperiodic orbit of the 
ow associated to cH(x) and the corresponding pathof symplectic matrices is d'ct(x). So the Maslov index of the orbit is thesame. Consequently, by rescaling, we may only consider Hamiltoniansg(ph) with jg0(1)j = 2 which will turn out to be convenient in view ofequation (8).Proof of part iii)We �rst consider the case n = 1 whose proof is di�erent from the casen > 1. Each matrix in Sp(1) can be uniquely written as � = UP whereU 2 SO(2) andP 2 � := fP 2 Sp(1) jP is symmetric and positive de�nite g:Since � is a contractible topological space the Maslov index of a path�(t) is determined by the SO(2) factor: �V (�(t)) = �V (U(t)). In polarcoordinates we have with positive functions f1 and f2:H(x; y) = g(ph(x; y)) = f1(r) � f2(�) = ~H(r; �):



56 5 STRICTLY CONVEX HYPERSURFACESSince g0 > 0 we have f 01(r) > 0. Hence_� = �@ ~H@r � 1r = �f 01(r)f2(�)r < 0:Hence every vector in R2 turns in negative direction under the 
ow '(t).This is also valid for d't(x) = �(t). Therefore every vector turns innegative direction under U(t). Consequently, after rescaling, U(t) is the
ow of a Hamiltonian of the form c(x2+y2). This gives 2n � �V (U(t)) =�V (�(t)).We compare the case n > 1 with H = h by using the splitting of propo-sition 5.1. Instead of the index of �(t) we will compute the index in atrivialization�t�(t)��10 : span(X(x(0)); x(0))� �x(0) ! span(X(x(t)); x(t))� �x(t):The construction of the trivialization is as follows: For n > 1 every loop in� is contractible we �nd a map u : [0; 1]2 ! � such that u(1; t) = x(t) andu(s; 0) = u(s; 1) = u(0; t) = u(1; 0). We trivialize �x and span(X(x); x)over the image of u. Via u we pull back this trivialization to [0; 1]2 andget a map � : [0; 1]2 ! Sp(n)with �(s; t) : Tu(s;t)R2n ! span(X(u(s; t)); u(s; t))� �u(s;t)and �(s; 0) = �(s; 1) = �(0; t) = �0We have �V (�(t)) = �V (�0�(t)��10 ). In fact, since Sp(n) is path con-nected we can join �0 with I by a path  (r) 2 Sp(n). Using the defor-mation invariance for  (r)�(t) �1(r) we get�V (�(t))� �V (�0�(t)��10 )= �V ( (1)�(t) (1)�1)� �V ( (0)�(t) (0)�1)= �V ( (r)�(1) �1(r))� �V ( (r)�(0) (r)�1)= �V ( (r)�(1) (r)�1)� 0 = 0:



5.1 Maslov indices 57We have used that �(0)=I= (1) and that �V ( (r)�(1) (r)�1) can onlybe non zero if Ker( (r)�(1) (r)�1 � I)changes dimension. Butdim(Ker( (r)�(1) (r)�1 � I)) = dim(Ker(�(1)� I))which is independent of r.Using the deformation invariance again we �nd�V (�(1; t)�(t)��10 )� �V (�(t))= �V (�(1; t)�(t)��10 )� �V (�0�(t)��10 )= �V (�(1; t)�(t)��10 )� �V (�(0; t)�(t)��10 )= �V (�(s; 1)�(1)��10 )� �V (�(s; 0)�(0)��10 )= 0;since these are constant paths.Writing �(1; t) = �t we have to compute the index of the path of matrices�t�(t)��10 : span(X(x(0)); x(0))� �x(0) ! span(X(x(t)); x(t))� �x(t)which are matrices of the form� �1(t) 00 �2(t) � :Here �1(t)is a 2�2 matrix and �2(t) is a (2n�2)�(2n�2) matrix. Since�(t)X(x(0)) = X(x(t)) and since �1(t) is symplectic�1(t) = � 1 0�(t) 1 � :This matrix never has an eigenvalue �1, so that �V (�1(t)) = ind �1(1)�ind �1(0). We compute�1(t)TJ � J�1(t) = � 2�(t) 00 0 � :



58 5 STRICTLY CONVEX HYPERSURFACESWe conclude that �V (�1(t)) = 0 or 1. Di�erentiating the 
ow we �nd byequation (8)ddt(�(t)) = �JH 00�(t)= �J((g00 � g0)(14 < h0; � >< h0; � >) + g012h00)�(t):Since g0 = 2 we see that restricted to �x (where < h0; � >= 0) we have:H 00j�x = h00j�x. If �h(t) denotes the linearized time one 
ow associated toh00 along x(t) we have for�t�h(t)��10 = � �h1(t) 00 �h2(t) �that the matrices �h2(t) and �2(t) corresponding to the �x componentagree. Consequently,2n � �V (�h(t)) = �V (�h1(t)) + �V (�h2(t))= �V (�h1(t))� �V (�1(t)) + �V (�(t)):Since for the 
ow associated to h we have d�t(x):x = �t(x) andd�t(x(0)):X(x(0)) = X(�t(x(0)))we have �1(t) = I and �V (�1(t)) = 0. Consequently,2n� 1 � �V (�(t)):Proof of part iv) Denote by �(�h) the linearized 
ow associated to theHamiltonian �h. Writing�t�(�h)(t)��10 =  �(�h)1 (t) 00 �(�h)2 (t) !we get since for the 
ow associated to �h we have d�t(x(0)):X(x(0)) =X(�t(x(0))) �(�h)1 (t) = �1 0� 1� :Hence �V (�(t)) � �k + 1: 2



5.2 The capacity 595.2 The capacityTheorem 5.4 Let � � R2n be strictly convex, bounding the open andbounded set U such that @U = �. Thenc(�) = c(U):Proof: For simplicity we assume that 0 2 U .We �nd a sequence Hk of Hamiltonians such that for the associated timeone maps 'k we have c+('k)! c+(U). We can choose the Hk such thatHk =const= ck for x 2 (1 � 1=k)U and supp(Hk) � U and Hk � Hk+1,see �gure 3.
U� �Figure 3: HkFor �xed k and � � 0 we de�ne~Hk(x) = (1� 1=k)�2Hk((1� 1=k)x)(see �gure 4) with associated time one maps ~'k.

� U �Figure 4: ~Hk



60 5 STRICTLY CONVEX HYPERSURFACESBy proposition 3.24 we get c+(~'k) = (1� 1=k)�2c+('k). Consequentlylimk!1 c+(~'k) = c(U):Observe that ~Hk =const on U .For �xed k we consider a continuous family of di�erentiable functionsgk;s : [0; 1]! R with s 2 [0; 1] withgk;s(r) = (1� s)ck for r = 0g0k;s(r) > 0 for r 2]0; 1� 1=(k)[gk;s(r) = ck for r 2 [1� 1=(k); 1]:We consider the Hamiltonians (see �gure 5)~Hk;s = ( ~Hk on R2n n Ugk;s(ph) on U:
� U �Figure 5: ~Hk;sLet ~'k;st be the 
ow associated to ~Hk;s. We want to show thatc+(~'k) = c+(~'k;0) = c+(~'k;1):Let ~Sk;s : S2n � Rk ! R be a family of generating functions generating~'k;s. Denote by ~Qk;s the quadratic form at `in�nity'. By a small pertur-bation in a neighbourhood of the points associated to U we may assumethat the critical points of the perturbed family Ŝk;s are non degeneratefor almost all s whenever this critical point generates a point in U .



5.2 The capacity 61If '̂k;s denotes the family of symplectic di�eomorphisms associated to Ŝk;swe have that c+('̂k;s) is arbitrary close to c+(~'k;s). So we are done if weshow that c+('̂k;s) = c+('̂k;0):The capacity c+('̂k;s) depends continuously on s. Since on R2n n U wehave 'k = '̂k;s and since the action spectrum is compact and nowheredense we see that the �xed points xs of '̂k;s which are associated to acritical point ps of Ŝk;s such thatŜk;s(ps) = c+('̂k;s)have to be inside U whenever the capacity changes. We can now �nd acontradiction to the assumption that the capacity changes by looking atthe Maslov indices.Around x = 0 we can assume that the Hamiltonian associated to ~'k;s and'̂k;s is given by c � (x2 + y2) with 0 � c � �. We conclude �V (V ) � 2n.For a �xed point xs 6= 0 of '̂k;s inside U we have that Txs'̂k;st is arbitraryclose to Txs ~'k;st . By proposition 5.3 we have �V (Txs ~'k;st ) � 2n� 1.We claim that �V (Txs'̂k;st ) � 2n � 1. To this end we consider a path 
from Txs ~'k;s1 2 Spk(n) to Txs'̂k;s1 . Generically Txs'̂k;s1 has no eigenvalue�1. By the argument in proposition 4.8 we can assume that Txs ~'k;s1 hasno eigenvalue �1 either. Thus �V (
) = ind Txs'̂k;s1 � Txs ~'k;s1 � 0. Bydeformation invariance we have�V (ind Txs'̂k;st ) = �V (ind Txs ~'k;st ) + �V (
) � 2n� 1:Hence, by proposition 4.9, ind d2Ŝk;s(ps) � ind ~Qk;s � 2n � 1. Sincefor almost all s we have that d2Ŝk;s(ps) is non degenerate we have byproposition 3.6 ind d2Ŝk;s(ps)� ind ~Qk;s = 0 which is a contradiction. Soxs has to be inside U and c+(~'k;s) cannot change.To �nish our proof we de�ne a homotopy �gk;r of functions which deformgk;1 to 0 on [0; 1� 2=k] such that �g0k;r > 0 where �gk;r > 0.De�ne (see �gure 6) �Hk;r = ( ~Hk on R2n n U�gk;r(ph) on U:



62 5 STRICTLY CONVEX HYPERSURFACES
� U �Figure 6: �Hk;rDenote the associated 
ow by �'k;r. In view of the above index argumentthe critical point associated to c+(�'k;r) cannot be located where �g0k;r > 0.It also cannot be located where �gk;r = 0 since then c+(�'k;r) would haveto jump to zero. Hencec+(�'k;1) = c+(~'k;0) = c+(~'k):Consequently the maps �'k;1 constitute a sequence with supp( �Hk;1) �! �and c+(�'k;1) �! c(U) 2



636 A `generalized �xed point theorem'Theorem 6.1 Let � � R2n be a closed strictly convex smooth hyper-surface. Denote by L�(x) � � the leaf of the characteristic foliationde�ned by ker(!j�). Let  be the time one di�eomorphism of the 
ow ofa time dependent Hamiltonian vector �eld XK whose Hamiltonian K iscompactly supported.If 
( ) < c(�)then there exists a point x 2 � with  (x) 2 L�(x).Remarks: In Moser's theorem 2.1 one needed that K was C1-closed tothe identity. Our theorem might be interpreted as a smallness condition,too. We know that 
( ) = 0 ()  = I and the capacities arecontinuous for the C0-norms on Hamiltonian functions and on symplecticdi�eomorphisms with compact support. Every strictly convex open setcontains a ball with non zero capacity. Hence the capacity of � is nonzero. We conclude that if K is C0-closed to zero respectively  is C0-closed to the identity then a point x 2 � with  (x) 2 L�(x) always exists.Thus we have replaced C1-closed by C0-closed.Our theorem is not only a smallness condition. In applications one mayuse that 
( ) < supK � infK by proposition 3.17. We do this afterproving the theorem.Proof:In the �rst part the proof follows the lines of theorem 5.4.We start with a Hamiltonian functionH with suppH � U with associated
ow ' such that 
( ) < c+(') � c(U):and H = const = c on (1 � �)U . We can �nd a family of HamiltonianfunctionsH�, � 2 (0; 1=2) such thatH�1 � H�2 > H for �1 < �2, suppH� �U and H� = c on (1 + �)�1U .



64 6 A `GENERALIZED FIXED POINT THEOREM'By proposition 3.24 we have that ~H� := (1+ �)2H�((1+ �)�1x) is a familyof Hamiltonian functions such that for the associated 
ows ~'� we have
( ) < c+(~'�) � (1 + �)2c(U) < 3c(U):Note that ~H� = (1 + �)2c < 3c on U and supp ~H� � (1 + �)U . As intheorem 5:4 we can deform these Hamiltonians to Hamiltonian functions�H� with supp �H� � (1 + �)U n (1� �)U such that for the associated 
owswe have c+(�'�) = c+(~'�):We have by proposition 3.13 (vi)c+(�'� ) � c+(�'�) + c�( ) = c+(�'�)� 
( ) + c+( ) > c+( ):Let s 7! �'�s be the 
ow of �H�. Consider the Hamiltonian di�eomorphism�'�s . Let Hs;� be a Hamiltonian associated to �'�s .c+(�'�s ) changes continuously in s by Proposition 3.15. The action ofperiodic orbits x of �'�s with x(0) =2 (1 + �)U n (1� �)U does not changein s. The action spectrum of �'�s is compact and nowhere dense, so the�xed points transporting c+( ) to c+(�'�1 ) have to be in (1+�)Un(1��)U .Therefore there has to be a 0 < s � 1 and a 1{periodic orbit x associatedto Hs;� with x�(0) 2 (1 + �)U n (1� �)U such thatc+(�'�s ) = �AH(x�) = c+(�'�1 ):(Remark: we cannot take s = 1 because the periodic orbit representingc+ might switch to some other region for s < 1 and stay there unchangeduntil s = 1.)De�ne Ĥ� := s � �H� with time one di�eomorphism '̂�. Consequently�'�s = '̂� .For each � we have found a �xed point x0� of '̂� with
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x� 2 �1+�; �� < � < �:Associated to x� there is a curve x�(t), t 2 [0; 2] with x�(t) =  t(x�),t 2 [0; 1] and x�(t) = '̂�t�1(x�), t 2 [1; 2].Denote by L1+�(x) := L(1+�)�(x) the leaf of the characteristic foliation on(1 + �)� through x (and analogously with the characteristic line bundle:L1+�).We have x�(t) 2 L1+�( (x�)) for t 2 [1; 2] because (1 + �)� is a regularenergy surface for Ĥ�.Let K be a Hamiltonian for  . We haveR 21 x��� = R 20 x��� + R 10 K(x�(t); t) dt + R 21 Ĥ�(x�(t)) dt� R 10 x��� � R 10 K(x�(t); t) dt � R 21 Ĥ�(x�(t)) dtRemembering that d� = �d(pdq) we observe that the �rst three sum-mands are equal toc+('̂� ) � c+('̂�) + c+( ) � c((1 + �)U) + c(U) � 4c(U):The next two summands are bounded because K and K 0 are boundedand the last one is bounded by k.So ���R 21 x������ � const. For � < 1=2 and (x; �) 2 L1+�(x) we have j�(x)(�)j �dj�j where d > 0 (because (1+�) �U n(1��)U is compact and �(x)(�) > 0).Since _x�(t) 2 L1+�(x�) for t 2 [1; 2], x��� does not change sign on [1; 2]and we obtainconst � ����Z 21 x������� = Z 21 jx���j � Z 21 d j _x�(t)j dt = d � length(x�j[1;2]):So length(x�j[1;2]) � l.By `Arzela{Ascoli' we �nd a subsequence x�m converging to a curve x :[1; 2]! � with x�m ! x(0) and  (x�m)!  (x(0)), where (x�m) 2 L1+�(x�m):The foliations on the hypersurfaces depend smoothly on the radius andthe length of the leaves connecting x�m to  (x�m) is bounded by l. There-fore x and  (x) are connected by a leaf of bounded length.



66 6 A `GENERALIZED FIXED POINT THEOREM'This proves the theorem. 2Remark: There is some hope to generalize this theorem to starshapedhypersurfaces or even hypersurfaces of restricted contact type.We might try to generalize the proof to coisotropic submanifolds A � R2nof codimension k > 1. To foliate neighbourhoods of A with conformalcopies of A we would need k one forms �1; : : : ; �k such that d�i = ! and�1 ^ : : : ^ �k ^ !n�k is a volume form on A. Bolle in [Bol] consideredsuch submanifolds of `p{contact{type' where the �i are de�ned only in aneighbourhood of A.However, to perform our estimates we need that the forms are globallyde�ned | unfortunately this is not possible. To see this we assumethat the �i exist globally. We then have d�i � d�j = 0 which implies�i � �j = df . We have that d(f jA)(x) = 0 for some x 2 A. Hence�ijA(x) = �jjA(x) and �1 ^ : : : ^ �k ^ !n�k cannot be a volume form onA.Application to harmonic oscillatorsDe�ne H0(q; p) = 12�ai(q2i + p2i ) where ai > 0. Let a := minfai j 1 � i �ng. The ellipsoid � := f(q; p) 2 R2n jH0(q; p) = 1ghas capacity c(�) = a2�: We may assume that a = a1. Then B2n(a) �� � Z2n(a) and c(B2n(a)) = a2� = c(Z2n(a)).Corollary 6.2 Let H0(q; p) = 12�ai(q2i + p2i ) with 0 < a := minfaig withassociated time one di�eomorphism '0 and H1 : R�R2n ! R with supportin [0; 1]� U with U bounded. Let '1 be the 
ow associated to H1 and  be the 
ow of H0 +H1. Ifi) 
( ) < � or ii) supH1 � infH1 < �then there exists a point x 2 H�10 (1) =: � such that  (x) is on the sameorbit of '0 as x.



67Proof: The leaves of the characteristic foliation on � are the orbits of '0t .Consequently, we look for points x such that  (x) 2 L�(x). Hence i) is asimple consequence of theorem 6.1. To prove ii) we observe that (x) 2 L�(x) () ('0)�1 (x) 2 L�(x):As proved in [HZ], proposition 5.1, we see thatK(t; x) := (H0 +H1)(t; '0t (x))�H0('0t (x)) = H1(t; '0t (x))is a Hamiltonian for ('0)�1 . Since supK�infK = supH1�infH1 < a2�we have by proposition 3.17 
(('0)�1 ) < a2� so that we can apply thetheorem. 2



68 A COISOTROPIC SUBMANIFOLDSA Coisotropic submanifolds and symplec-tic reductionWe explain the concepts of coisotropic submanifolds and symplectic re-duction following Weinstein [W].Let M be a symplectic manifold of dimension 2n and A � M be a r{codimensional submanifold. In the tangent bundle the symplectic com-plement is de�ned byTxA! = f� 2 TxM j !(�; �) = 0 8 � 2 TxAgThe submanifold A is called coisotropic if TxA! � TxA. If TxA! = TxAwe call A Lagrangian. In this case we have dimA = n. Another importantexample of coisotropic submanifolds are hypersurfaces as level surfaces offunctions M ! R.TxA! de�nes a r{dimensional distribution on TxA. The distributionTxA! =: LA is called characteristic distribution and in the case of hyper-surfaces characteristic line bundle.There is a particularly interesting class of hypersurfacesDe�nition A.1 A hypersurface � � R2n is of contact type if on a neigh-bourhood of � there exists a 1{form � such that d� = ! and � ^ !n�1 isa volume form on �.� is of restricted contact type if � can be de�ned globallyExample: Starshaped domains.We return to an arbitrary coisotropic submanifold A. We observe thatfor two vector �elds �1; �2 in TA! and any vector �eld � in TA0 = d!(�1; �2; �) = �!([�1; �2]; �):Hence [�1; �2] 2 TA!. By Frobenius' theorem the distribution is inte-grable. we denote by LA(x) the leaf through x 2 A. We locally havea (n � r){dimensional manifold MA whose tangent space is given byTxA=TxA!. We call MA reduction of M by Q and write � : A!MA. Infact MA is a symplectic manifold because ! is independent on the pointchosen on the leaf of the foliation:



69Let � be a vector �eld with �(x) 2 TxA!.L�! = d(i�!) + i�d! = 0:Denote by !A the reduced form. We have for �1; �2 2 TxA!(�1; �2) = !A(�(�1); �(�2)):We next need the followingProposition A.2 Suppose that the reduction of M by A exists. Let L �M be Lagrangian such that L intersects A transversally, that is TxA +TxL = TxM for any x 2 L \ A.Then the reduction �(L \ A) is an immersed Lagrangian submanifold ofMA.Proof: First we show that TL\TA! = f0g. Assume that � 2 TL\TA!and � 6= 0. Then there exists � 2 TM such that !(�; �) 6= 0. Due totransversality we can write � = �1 + �2 with �1 2 TL and �2 2 TA. Butthen !(�; �1) = 0 and !(�; �2) = 0, a contradiction.We have for x 2 A that ker(Tx�) = TxA!. Hence for �jL\A : L\A!MAwe have ker(Tx�jL\A) = f0g. Hence �jL\A is an immersion. We have toshow that �(L \ A) is Lagrangian. Clearly !A restricted to �(L \ A) iszero, hence �(L \ A) � (�(L \ A))!.For � 2 (TxL \ TxA)! we show that � 2 (TxL \ TxA) + TxA!. Since thisspace is mapped to �(TxL\TxA) we then have �(�) 2 (TxL\TxA), hence�(L \ A) � (�(L \ A))!.Let � 2 (TxL\TxA)! = TxL! +TxA! = TxL+TxA!. Hence � = �1+ �2with �1 2 TxL and �2 2 TxA!. But TxA! � TxA. Consequently �1 =� � �2 2 TxA. Thus �1 2 TxL \ TxA and � 2 (TxL \ TxA) + TxA!. 2



70 B DIFFERENT MASLOV INDICESB Di�erent Maslov indicesIn his paper [A] Arnold presented two equivalent ways to de�ne an indexfor loops of Lagrangian subspaces as proposed by Maslov. It uses the factthat for the set of Lagrangian planes �(n) in R2n we have �1(�(n)) = Z.Since then many di�erent versions to generalize this index to arbitrarypaths have appeared. In their paper [CLM] Cappell, Lee and Miller pre-sented four equivalent ways to generalize the index from [A] | two ofthem as direct generalizations of Arnold's ideas and two via in�nite di-mensional spectral 
ows.They considered any index for paths of pairs of Lagrangians (L1(t); L2(t))that satis�es the properties (i){(iv) of proposition 4.4. (It is no problemto reformulate (i){(iv) for pairs). In addition the index � has to satisfya symplectic invariance property: �(L1(t); L2(t)) = �(�L1(t); �L2(t)).We only need that for symplectic automorphisms � with �j(Rn�f0g) = idwe have �(�(
)) = �(
).We now present their technique. We restrict ourselves to a = 0 and b = 1.Consider a path 
 : [0; 1]! �(n).First we have to show the symplectic invariance property. We look for ahomotopy �(s) in Sp(n) joining � and I such that �(s)j(Rn�f0g) = id .We can write � = � I B0 I �and then �nd any homotopy B(s) of matrices that joins B to 0. We thusfound the desired homotopy.For �(s) and any Lagrangian L we have�(s)(L) \ (Rn � f0g) �= L \ (�(s) (Rn � f0g)) = L \ (Rn � f0g)such that the dimension of the intersection stays constant. By deforma-tion invariance we then have �(�(
)) = �(
).We now write Rk0 � iRn�k0 for Rk0 � f0g � f0g � Rn�k0 � R2n. Bysymplectic invariance and symplectic additivity we can assume that 
(0)is given in the following form: 
(0) = Rk0 � iRn�k0 and 
(1) = Rk1 �iRn�k1.



71Now we begin with the construction. We add a tail to the ends. Consider
k(t) = (eitRk)� iRn�k. From [A] we know that for small t 6= 0 the pathhas trivial intersection with Rn � f0g. We then consider the path
~
(t) = 8>>>>>><>>>>>>:


k0(t + �=2) for t 2 [��=2;��=4]
k0(�t) for t 2 [��=4; 0]
(t) for t 2 [0; 1]
k1(�1 + t) for t 2 [1; 1 + �=4]
k1(1 + �=2� t) for t 2 [1 + �=4; 1 + �=2]Since the added tails are traversed in both directions we have �V (
) =�V (~
).At t = ��=4 and t = 1+�=4 there is only trivial intersection withRn\f0g.We can deform ~
j[��=4;1+�4] to a path with which only intersects �1(n)transversally and none of the �k(n) with k > 1. Let us assume that itintersects �1(n) p times like eitR� iRn�1 and q times like e�itR� iRn�1.We de�ne x = �(eitRjt2[0;�=4]) and y = �(e�itRjt2[��=4;0]). (A subscript atx and y will in the following denote a special index.) Close to the endpoints we can compute the Maslov indices by symplectic additivity.Summing up we obtain �(
) = �(~
) = k0x + (x+ y)p� (x + y)q + k1y.As proved in proposition 4.4 we have for �V thatxV = 0 and yV = �1:Consequently �V (
) = �(p� q)� k1:The index of Cappell, Lee and MillerThe index �CLM of Cappell, Lee and Miller satis�es xCLM = 1 andyCLM = 0. Consequently for any path 
�CLM(
) = k0 + (p� q)



72 B DIFFERENT MASLOV INDICESand�V (
) = ��CLM(
) + dim(
(0) \ (Rn � f0g))� dim(
(1) \ (Rn � f0g))For loops the index �CLM agrees with the Maslov index de�ned by Arnold.Consequently �V is the negative Maslov index for such paths.The index of Robbin and SalamonIn [RS] Robbin and Salamon de�ned another Maslov index �RS via thesignature of an intersection form. They count signs at starting and endpoint with a factor 1=2.Consequently xRS = yRS = 1=2 and �RS(
) = 1=2k0 + (p � q) + 1=2k1.Hence�V (
)= ��RS(
) + 1=2(dim(
(0) \ (Rn � f0g))� dim(
(1) \ (Rn � f0g)):
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