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Abstract

In 1992 Claude Viterbo used generating functions to define symplectic
capacities for compactly supported Hamiltonian diffeomorphisms ¢ of the
special symplectic manifold R?". He applied them to define capacities for
open sets in R?". We extend the definition of these capacities to arbitrary
sets in R?" and prove that this generalization is non trivial: the capacity
of a strictly convex hypersurface ¥ is equal to the capacity of an open
bounded set U with QU = ¥ which is a positive number.

We prove this by considering a Hamiltonian function which is constant
on U and zero on a neighbourhood of U and deform it to a Hamiltonian
function with support in a neighbourhood of ¥. Via the Hamiltonian
equations we can associate to these functions Hamiltonian isotopies. We
show that the deformation can be performed without changing the capac-
ities of the time one diffeomorphisms. To do this we explicitely compute
the Maslov indices of periodic orbits of the flow. We use a definition of
the Maslov index from Claude Viterbo and David Theret and develop an
algorithm to compute the indices via the spectral flow of a finite dimen-
sional operator.

We then apply this result to show a generalized fixed point theorem which
is a partial generalization of a result of Jiirgen Moser from 1978. Moser
considered any compact simply connected coisotropic submanifold A of
an exact symplectic manifold M and an exact symplectic diffeomorphism
¢ which is C'close to the identity. He proved that there exist two points
x € A such that ¢(z) and x are on the same leaf of the characteristic
foliation on A.

We only consider strictly convex hypersurfaces ¥ C R?". Under the
hypothesis that the capacity of ¢ is smaller than the capacity of U we
show that there exists a point # € ¥ which is mapped under ¢ onto its
own leaf.

This answers a question of Helmut Hofer who in 1989 proved a similiar
result formulated in terms of Hofer’s displacement energy and capacities
defined by Ivar Ekeland and Helmut Hofer. His result is valid for hy-
persurfaces of restricted contact type. He asked whether one could use
Viterbo’s capacities instead to find bounds on the capacities of symplectic
diffeomorphisms that would guarantee the existence of a point which is
mapped onto its own leaf.



Zusammenfassung

Claude Viterbo benutzte 1992 Erzeugende Funktionen, um symplektische Ka-
pazititen fiir Hamiltonsche Diffeomorphismen mit kompaktem Triger im R?"”
zu definieren. Damit definierte er dann Kapazititen fiir offene Mengen im R?",
Wir erweitern die Definition dieser Kapazititen auf beliebige Mengen im R2"
und zeigen, dass die Definition nicht trivial ist: Die Kapazitat einer strikt kon-
vexen Hyperflache ¥ ist gleich der Kapazitat einer beschrankten offenen Menge
U mit o0U = %. Kapazititen offener Mengen sind positiv.

Den Beweis fithren wir, indem wir eine Hamiltonsche Funktion betrachten,
die konstant auf U ist und Trager in einer Umgebung von U hat. Wir de-
formieren diese in eine Funktion mit Trager in einer Umgebung von 3. Uber
die Hamiltonschen Differentialgleichungen erhalten wir dann Hamiltonsche Iso-
topien. Wir zeigen, dass die Deformation ausgefiihrt werden kann, ohne die
Kapazitaten der Zeit—1-Diffeomorphismen zu dndern. Dabei berechnen wir
explizit die Maslov Indizes der periodischen Orbits des Flusses. Wir benutzen
eine Definition des Maslov Index, die auf Claude Viterbo und David Theret
zuriickgeht und entwickeln einen Algorithmus, den Maslov Index iiber den
Spektralfluss eines endlichdimensionalen Operators auszurechnen.

Diese Resultate wenden wir an, um einen verallgemeinerten symplektischen
Fixpunktsatz zu zeigen, der eine teilweise Verallgemeinerung eines Resultats
von Jiirgen Moser aus dem Jahre 1978 ist. Moser betrachtete eine beliebige
kompakte, einfach zusammenhangende, coisotrope Untermannigfaltigkeit A
einer exakt symplektischen Mannigfaltigkeit M und einen exakt symplekti-
schen Diffeomorphismus ¢, der C''-nahe bei der Identitit ist. Er zeigte, dass
zwei Punkte z € A existieren, so dass ¢(z) und z auf dem gleichen Blatt der
charakteristischen Blatterung auf A liegen.

Wir betrachten nur strikt konvexe Hyperflichen ¥ C R?". Unter der Voraus-
setzung, dass die Kapazitat von ¢ kleiner als die Kapazitat von ¥ ist, zeigen
wir, dass ein Punkt 2 € ¥ existiert, der unter ¢ auf sein eigenes Blatt abgebildet
wird.

Das beantwortet eine Frage von Helmut Hofer. Dieser benutzte 1989 seine
‘displacement’ Energie und Kapazitaten, die von Ivar Ekeland und Helmut
Hofer definiert wurden, um ein dhnliches Resultat fiir Hyperflachen vom ein-
geschrankten Kontakt—Typ zu zeigen. Hofer fragte, ob Viterbos Kapazitaten
genutzt werden kénnen, um Schranken fiir Kapazitaten symplektischer Diffeo-
morphismen zu finden, so dass die Existenz eines Punktes garantiert ist, der
auf sein eigenes Blatt abgebildet wird.



Periodic hobbits

In [To] J.R.R. Tolkien stated that

In a hole in the ground there lived a hobbit. Not a nasty, dirty, wet hole,
filled with the ends of worms and an oozy smell, nor yet a dry, bare, sandy
hole with nothing in it to sit down on or to eat: it was a hobbit-hole, and
that means comfort.
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6 1 INTRODUCTION

1 Introduction

Generalized fixed points

Many problems in symplectic geometry lead to questions like whether
Lagrangian submanifolds of a symplectic manifold (M,w) intersect or
whether a symplectic diffeomorphim ¢ has fixed points. One can connect
these two questions if one looks at the diagonal A in (M x M, (—w) ®w),
and intersects A with the graph of ¢. The intersection points of these
two Lagrangians are the fixed points of ¢.

In 1978 J. Moser presented in his paper ‘A Fixed Point Theorem in Sym-
plectic Geometry’, [M], another point of view to bring these two prob-
lems together. He considered a compact simply connected coisotropic
(see appendix A in this work) submanifold A C M. Tt is foliated by k-
dimensional leaves if the codimension of A is k. Denote the leaf through
x € A by Lu(z). Given a symplectic diffeomorphism ¢ which is close to
the identity Moser proved (see theorem 2.1) that there are at least two
points which are mapped onto its own leaf: ¢(z) € La(x). This can be
considered as a ‘generalized fixed point’.

For a Lagrangian submanifold A the leaves are n—dimensional, hence
La(x) = A. Consequently ¢(A) N A consists of at least two points. The
other extreme is that A = M. In this case the leaves are points and one
considers symplectic fixed points.

There are interesting intermediate cases, for example hypersurfaces ¥ C
M which are automatically coisotropic. The leaves are one dimensional.
Moser then considered in the case n > 1 the harmonic oscillator given
by the Hamiltonian function Hoy(g,p) = 3Za;(¢? + p?) and a function
H, : R x R*™ — R with support in [0,1] x R?*". Denote by ¢, the
Hamiltonian flow associated to H;. Moser proved that for every ¢ > 0
there exists a point z € H '(¢) =: ¥ such that p(x) € Ly(x). This is
valid in the case n = 1 as well. To see this we tell a little story:

Suppose little Jana' is sitting on a swing. There is no friction so her en-
ergy is conserved. Then there comes a short (Hamiltonian) breeze slowing
her down?. She looses energy. She thinks that if only the same breeze had
hit her at another point in her movement it would have accelerated her.

see http://www.math.ethz.ch/tlinne/jana.jpg
20k, that is not consistent — now there is friction — every model has its disadvan-
tages



So there has to be a point in her movement where the same breeze would
leave her on her old energy level again. If the breeze is too stormy it would
have accelerated her in any case — which could be very uncomfortable.

This little example shows that the natural question that arises is the
following: Can the smallness condition in Moser’s theorem be replaced by
geometric conditions on ¥ and @ ?

This work deals with the above question. Before explaining our approach
via ‘generating functions’ we give another partial answer which was de-
rived by H. Hofer in his paper ‘On the topological properties of symplectic
maps’, [H], by infinite dimensional variational methods.

Capacities

Hofer used symplectic invariants, the symplectic capacities (see definition
2.2). The first capacity, the so—called ‘symplectic width’ was discovered
by M. Gromov in his famous paper ‘Pseudo—Holomorphic Curves in Al-
most Complex Manifolds’, [Gr]. The capacity cpy that Hofer used was
defined by E. Ekeland and H. Hofer in ‘Symplectic Topology and Hamil-
tonian Dynamics’, [EH]|. Hofer then defined the energy of symplectic
diffeomorphisms with compact support?.

He considered a hypersurface of restricted contact type (see definition A.1)
with capacity cgy(3) and a symplectic diffeomorphism ¢ with energy
E(¢) < cpu(X). He proved that there exists a point x € ¥ such that x
and ¢(z) are on the same leaf of the characteristic foliation on X.

see theorem 2.5.

Generating functions

In the search for fixed points and Lagrangian intersections there have
been used in the past years two main techniques to tackle problems in
symplectic geometry. In 1978 P. Rabinowitz, [R], discovered that the
degenerate action functional of classical mechanics can be successfully
used for existence results. Afterwards, A. Floer, H. Hofer and many
others used infinite dimensional action functionals on the loop space of
any symplectic manifolds to prove strong existence results.

3This energy can be used to define a bi-invariant metric on the space of symplectic
diffeomorphisms with compact support.
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The other approach is used in the framework of cotangent bundles of
closed manifolds. It stays in finite dimensions and uses generating func-
tions, a concept which was already known to H. Poincaré in the last
century. L. Hormander in [Ho] extended the definition of generating func-
tions to higher dimensional vector bundles to solve problems in partial
differential equations.

Generating functions describe Lagrangians in the cotangent bundle of a
given manifold B. One question is: Which Lagrangians admit generating
functions?

In his paper ‘Une idée du type géodésiques brisés pour les systemes hamil-
toniens’, [Ch], M. Chaperon in 1984 presented an idea how to construct
generating functions for graphs by a broken geodesic method. The idea
was prompted by the Lyapunov—Schmidt reduction method of the classi-
cal action functional in the proof of the Arnold concecture of the torus.

In 1986 J. C. Sikorav utilized in his paper ‘Sur les immersions lagrangi-
ennes admettant une phase génératrice globale’, [S], this idea to prove for
cotangent bundles that the property of having a generating function is
invariant under Hamiltonian isotopy. He even proved that the generating
function can be chosen to be quadratic at infinity, see theorem 3.4.

In his paper ‘Symplectic Topology as the Geometry of Generating Func-
tions’, [V2] C. Viterbo in 1992 showed that the ‘generating functions
quadratic at infinity’ constructed this way are unique up to some natural
operations, see theorem 3.5%.

With the help of the uniqueness theorem C. Viterbo was able to con-
struct symplectic capacities for open sets in R?" and also for symplectic
diffeomorphisms.

It is not clear how far Ekeland/Hofer’s and Viterbo’s capacities agree.
H. Hofer then asked whether Viterbo’s capacities can be used to prove a
result similar to his theorem mentioned above.

In our work we answer this question positively for the case of strictly
convex hypersurfaces.

4There were some imprecisements in his proof, namely an incorrect reference to a
theorem of J. Cerf, [Ce]. The proof was cleared in the thesis of D. Theret, [Th].



We next present a summary of each chapter of this thesis. (Chapter 1 is
this introduction.)

Chapter 2

It is devoted to the formulation of the theorems of Hofer and Moser.
Furthermore, most of the basic definitions are stated.

Chapter 3

The third section deals with the concept of generating functions. Sikorav’s
existence and Viterbo’s uniqueness theorem can be found here. We recall
the definition of Viterbo’s capacities and some of their properties from
Viterbo’s paper [V2], adding proofs where Viterbo has skipped them. For
proposition 3.8, S. Born in his diploma thesis has presented an improved
proof which we add as well. Furthermore some inequalities we need in
the last section are shown (Proposition 3.13).

In addition, we extend Viterbo-capacities to arbitrary subsets of R?”. We
prove that the Viterbo—capacity of the unit sphere is 7, thus showing that
Viterbo’s capacities are non trivial, even for sets which are not open.

Chapter 4

In the fourth section we introduce a version of the Maslov index which
is adapted to generating functions. There are several possibilities to gen-
eralize the Maslov index for Lagrangian loops (see [A]) and the related
Conley-Zehnder index for periodic orbits (see [CZ]) to the case of arbi-
trary paths. Viterbo in [V1] introduced a generating function version of
this index proving that it really is the Maslov index by comparing it to
the index in [CZ] and [Du]. Theret in [Th] proved that this index satisfies
the axioms of a Maslov index as defined by Capell/Lee/Miller in [CLM]
without leaving the context of generating functions.

Out of Theret’s work we derive a generic formula (proposition 4.7) for
the index which nicely reflects the ‘broken geodesic’ nature of generating
functions quadratic at infinity: In the construction of generating func-
tions for Hamiltonian isotopies one writes the isotopy as a composition of
symplectic maps
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1= (prop; ) o...o(p,0p ' )o...o(p, o).

Here the ‘breaking points’ ¢, are chosen such that ker(d(¢, o ;' )(z) +
I) = {0} for all ¢ €]t;_,t;] and all z € R*",

Our formula for the Maslov index states that one has to compute the spec-
tral flow of a finite-dimensional symmetric operator — but only as long
as dy, has no eigenvalue —1. In the generic case defined in proposition
4.7 there is only a finite number of times #; such that dy, has eigenvalue
-1.

Thus we compute the indices on time intervals |¢;_1, ;] and then add up
these indices.

In contrast, the Maslov index defined intrinsically by H. Hofer, C. Wysoc-
ki and E. Zehnder in [HWZ1] and [HWZ2] uses the spectral flow of an
infinite dimensional self adjoint operator — and one does not need to
break up.

Thus in the context of generating functions one stays in the finite di-
mensional realm — for the prize of having to break up and getting more
complicated formulas.

We then prove that this formula is really generic: Every path of symplectic
matrices can be deformed without changing its Maslov index to one to
which the formula applies.

Chapter 5

In this section we prove that for a strictly convex closed hypersurface ¥
and a bounded set U with 0U = X the capacities agree:

c(U) = e(X).

To do this we have to deform a Hamiltonian function H which is constant
on U and 0 outside a small neighbourhood of U to a function which is
constant on a small neighbourhood of ¥ and 0 on a slightly bigger neigh-
bourhood without changing the capacities of the associated Hamiltonian
diffeomorphisms.

In the proof we need to control the Maslov indices of the periodic orbits
during the deformation — which we can do with the help of the generic
formula.
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Chapter 6

We consider a strictly convex closed hypersurface with capacity ¢(X) and
a Hamiltonian diffeomorphism ¢ satisfying c¢(y) < ¢(X). We prove that
there always exists a point z € ¥ such that x and ¢(x) are on the same
leaf of the characteristic foliation on .

We next sketch the proof. For U with QU = ¥ we can vary the size of U
by multiplying every z € U with a real number «, thus obtaining aU.

As in chapter 4 we consider a sequence of Hamiltonians Hj, with support
in (14+1/k)U\ (1 —1/k)U such that the capacities of the time one flows
are close to ¢(X).

These Hamiltonians have for |§| < 1/k the strictly convex hypersurfaces
(14 6)X as regular energy surfaces. We then find a point z € (1 + §)X
such that its image ¢(x) is on the same leaf:

(7)) € Laysys(Tr).

We find a bound on the length of the leaves independent of k. Passing to
the limit £ — oo and applying Arzela—Ascoli yields that there is a point
x € ¥ with

o(x) € Ly(x).

Appendix 1

Here we recall the concepts of coisotropic submanifolds and symplectic
reduction following Weinstein [W].

Appendix 2

We compare different versions of the Maslov index.
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2 Basic definitions and generalized fixed
point theorems

2.1 Basic definitions and sign conventions

A symplectic manifold (M, w) is a manifold M together with a closed non
degenerate 2—form w. It is called exact if w = da. The main example, in
fact, the only one we need, is the cotangent bundle M = T*B 5 B of a
given manifold. On cotangent bundles there is a canonical construction to
make them symplectic manifolds. In local coordinates (g, p) the canonical
one form « is defined as a = Xp;dg; = pdq for short. The global definition
is as follows: Given &,, € T, ,(T*B) we set

a(§) = p(Tr(£)).

We define w = —da = —d(pdq) = dg A dp. A diffeomorphism ¢ is
called symplectic if ¢*w = w and exact symplectic if p*a — a = dF
for some function F' on M. To a given function (called time dependent
Hamiltonian) H : R x M — R we associate the Hamiltonian vector field
Xy defined by

iXHw =dH

where dH denotes derivative in the space variable. The flow ¢, defined
by ¢, = Xu(p,) and ¢, = Id is called Hamiltonian isotopy, its time one
diffeomorphism we denote by ¢, = . The flow consists of symplectic
maps, exact symplectic if M is exact symplectic.

We say that H, ¢, and ¢ are associated to each other. We say that ¢ has
support in U if ¢ = Id on M \ U.

We now specify these concepts for the special case M = R?". With the
standard scalar product < -, - > we write w =< J-,- > with

J::(?‘J). (1)

We write (¢,p) = z. For A\, := % < Jx,- > we have d\, = w =< J-, - >.
We can write the Hamiltonian equations as

¢ =—JH'(p)
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where H' is the gradient of H taken in space direction.

Example: In R? we have for H(z) = 1/2(¢* + p?) the flow

q\ _ cost sint \  _p
S0t<p>_<—sint cost>_6 .

We define

HO(R?") .= {p | ¢ = ¢, is associated to a compactly supported
Hamiltonian function H : R x R?" — R}.

2.2 Generalized fixed point theorems

We formulate Moser’s theorem about generalized fixed points from [M].
We refer to Appendix A for the definition of coisotropic submanifolds.

Theorem 2.1 (Moser) Let (M,w) be a simply connected exact symplec-

tic manifold with o = dw. Let A L M be a compact r—codimensional
coisotropic embedded submanifold. Let b : M — M be exact symplectic
such that v is C'—close to the identity on a neighbourhood of j(A).

Then there exist at least two points x € M such that ¢(z) € La(x), that
is x and ¥ (x) are on the same leaf in M.

The proof of this theorem shows one of the main reasons why one uses
generating functions: One tries to reformulate the intersection problem
such that you look for critical points of functions — which are well un-
derstood.

Hence we sketch the proof here, but only for M = R?", thus avoiding all
technical difficulties.

Proof:

On R?" @ R?" we use the symplectic form w & (—w). Denote by z = (g, p)
the coordinates on the second and by Z = (g, p) coordinates on the first
factor.

3,0 (&, &) =< JT, € > — < Jr, &>
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makes (R* @ R?",w & (—w)) exact. Define

B(i,z)(fag) =< '](:f - l‘),g+€ >

We have that 5 = 0 on the diagonal A C (R* @ R>") and § — @ is exact.
We define a map ¢ : A — A such that ¢(z) € La(z) is the point on
La(z) closest to ¢(x). (Here we need the smallness condition.)

We look for points with ¢(z) = (). Consider the function ® : A —
Ax A,z (p(z),1(x)). One shows that ®* = dF is exact. The critical
points of F' are the points we looked for — They exist since A is compact.
O

It is a natural task to try to substitute the smallness condition in Moser’s
theorem by bounds depending on the ‘symplectic size’ of the submanifold
and the symplectic map. To do this we need symplectic invariants, pro-
vided by the concept of a capacity. We present the definition by Ekeland
and Hofer, [EH] which is applicable for subsets of R**. We define B*"(r)
to be the 2n—dimensional ball and Z?"(r) the symplectic cylinder

ZQn(T) = {(l‘la"' s Lns Y1y - - - ayn) ERQ”ﬁ"‘y% S TQ}

Definition 2.2 A symplectic capacity is a map ¢ which associates to ev-
ery subset U of R*™ a real number ¢(S) € [0,0c] such that the following
azioms hold.
(A1) Normalization: c¢(B?"(1)) =c¢(Z?"(1)) = 7.
(A2) Monotonicity: If ¢ € H'(R*") and p(U) C V
then c(U) < ¢(V).
(A3) Conformality: c(aU) = a?c(U).

One example of a symplectic capacity is the symplectic width from Gro-
mov, [Gr]. We need the following example of a capacity which has a
stronger property than (A2).

Theorem 2.3 (Ekeland/Hofer) Let Y be of restricted contact type®
and U be a bounded set such that OU = X..

There exists a symplectic capacity cgy such that cgy(X) = cpp(U).

Ssee definition A.1
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If for a diffeomorphism ¢ we furthermore have ¢*w = aw it holds that
CEH(QOU) = OéQCEH(U).

In [H] Hofer defines the ‘displacement energy’ of symplectic diffeomor-
phisms in H°(R*") to be

Eu(p) := inf{sup H — inf H| H is a Hamiltonian function
associated to p}.

Theorem 2.4 (Hofer) The map dy : H'(R*) x H*(R*") — [0,00) de-
fined by d(v,¢) = Exg(v='¢) defines a bi-invariant metric on H°(R*")
(bi-invariant means for § € HO(R®") we have d(0¢,0¢) = d(,¢) =
d(10, ¢0)).

Remark: In the definition of the displacement energy one can use instead
of sup H — inf H the number maxc[o,y; [max, H(t,z) — min, H(¢,z)] or
the L'-norm of the oscillation.

We are now able to formulate Hofer’s generalized fixed point theorem.

Theorem 2.5 (Hofer) Let ¥ be of restricted contact type and U be a
bounded set such that OU = . Let ¢ € H(R*") such that Ex(p) <
cer(X). Denote by Lx(x) the leaf of the characteristic foliation on X
through x, see appendiz A.

Then there exists x € ¥ such that
p(z) € Ly(z).

Ekeland and Hofer defined their capacity via an infinite dimensional varia-
tional principle. In the following section we will define Viterbo’s capacities
which are constructed with finite dimensional methods.

Hofer asked whether there exists a theorem similiar to theorem 2.5 for
Viterbo’s capacities instead of Ekeland/Hofer’s capacities. In section 6
we will answer this question positively, at least for strictly convex closed
hypersurfaces.
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3 Generating functions

3.1 Generating functions

If P: R*™ — R? is a symmetric matrix then its graph I'(P) is a
Lagrangian subspace in (R*" x R?" (—w) @ w) . Hence for a function
S :R"™ — R the set {(z,d,;S) |z € R"} C T*R" is a Lagrangian subman-
ifold of T*R™ (Look at the tangent spaces). We call S a naive generating
function for {(z,d,S)|x € R"}. By introduction of some auxiliary vari-
ables we can generate more general Lagrangians than just ‘graphs’ in the
cotangent bundle. The following definition also works for non trivial vec-

tor bundles but since we do not need them we restrict to trivial bundles
B x RN,

Definition 3.1 Let 7 : BxRY — B be a trivial vector bundle on a closed
manifold B. Let S : BXxRY := E — R be a function (z,v) — S(z,v) € R
whose fiber derivative is transverse to zero, i.e. for the points of the set

Ys ={(x,v) € E|%(S€,U> =0}

the derivative T‘g—f has mazimal rank. Thus Yg is a manifold. Define a
map

i:Ys—=>T'B ; (z,v)— <x,g—i>

S is called a generating function for L :=i(Xg).

Proposition 3.2 With the above assumptions on the rank L := i(Xg) C
T*B is an immersed Lagrangian manifold.

Proof:

Consider first the case M = R". Then in T*(R™ x R¥) we consider
the vectors that can be written as (¢,v,p,0). They form a coisotropic
subspace Ey. The complement Fy% is given by the vectors of the form
(0,v,0,0) The reduction Eg/Ex“ hence consists of vectors of the form
(¢,p) and can be identified with T*R".
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The set

~ 0S 0S
L:= {(qavapaw)‘p:a_qaw:%

is a Lagrangian submanifold of T*(R" x R¥).
Since T'%2 is non singular we have T,L +T,Epy = T,T*(R" x R¥)
Hence the reduction of I is Lagrangian and is given by n(LN Eg) = i(%).

To see that this works on manifolds as well we only need to observe that
En can be defined globally as the set of those cotangent vectors that
annihilate the kernel of T'wr. The reduction of Ey is T*B. The rest are
local constructions. O

We show that we can generate more complex Lagrangians than just
graphs:

Example: For B = R the function S: R x R? - R
(z,v1,v9) = =03 /3 4+ 20, —v3/3+ (1 — )y

generates an upright figure eight. a
Proposition 3.3 The circle S' C R? has no generating function

Sketch of Proof: In section 4.2 we define the Maslov index which asso-
ciates to every path of Lagrangian sub spaces of R?" an integer. We now
consider an arbitrary Lagrangian submanifold of R?". If we associate to
each closed loop (t) in L C T*R" the path of Lagrangians T, L we get
a loop of linear Lagrangians. Associating to this loop its Maslov index
we get an integer p(y). It turns out that the map v — R represents a
cohomology class in H'(L,Z), the Maslov class pu(L).

It turns out that the Maslov class is invariant under reduction (7*pu(7L) =
p(L)) and is zero for graphs, see C. Viterbo [V1], section 2.

For the path v(t) = (sint, — cost) we have

TywS' = {(rcost,rsint)|r € R}

In proposition 4.4 we shall show that its Maslov index is —2. O
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3.2 Generating functions quadratic at infinity

The natural question that arises is: When does a given Lagrangian sub-
manifold have a generating function. Up to now there are only partial
answers. Since we are interested in critical points of S we only consider
generating functions of a special type that have ‘sufficiently’ many critical
points.

If for ||v|| > clarge S(z,v) = Q,(v) where @ is a non degenerate quadratic
form on each fiber, S is called a generating function quadratic at infinity
abbreviated by gfqi. We can choose S such that @, = ) does not depend
on the base variable, see [Th].

The zero section in T*B has the generating function S(q) = 0. We now
have the following important existence result proved by C. Sikorav in
1986, [S]:

Theorem 3.4 (Existence, Sikorav) Let B be a closed manifold. The
property of having a gfqi is invariant under Hamiltonian isotopy on T*B.
Thus every Lagrangian submanifold L. C T*B which is Hamiltonian iso-
topic to the zero section has a gfqi.

See also [Tr] for a proof in the context of paragraph 3.4. O

There are some operations on generating functions leaving L fixed:

e Let S;: F— R, S : F— R be two generating functions. If there
exists a fiber preserving diffeomorphism

®:F — E;(x,v)— (z,0(x,0))

with S, 0 ® = S; + const then S; and S5 generate the same La-
grangian immersion and are called equivalent.

e Let S;: E; — R be a generating function and Q)5 : F5 — R be a
non degenerate quadratic form on the fibers. Then S; = S; + @5 :
E, ® F; — R generates the same Lagrangian immersion.

If Sy is obtained from a gfqi S; by adding a quadratic form, then Sy is
equivalent to a gfqi, see [Th]. This gfqi is called a stabilization of Sj.

We will need that the critical points we are interested in are independent
of the gfqi chosen. To do this we need the other important theorem in
the theory of generating functions
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Theorem 3.5 (Uniqueness, Theret and Viterbo) Let B be a com-
pact manifold. Let ¢ be the time one diffeomorphism of a Hamiltonian
isotopy on T*B. Define L := ¢(0g) where 0g C T*B is the zero section.
The gfqi for L is unique up to stabilization and equivalence.

This theorem is due to Viterbo [V2], see also [Th] for a detailed proof. O

3.3 Invariants for Lagrangian submanifolds

Following Viterbo [V2] we may define invariants of Lagrangian subman-
ifolds Hamiltonian isotopic to the zero section and coinciding with the
zero section on a open set U (in the next section U will be a neigh-
bourhood of the north pole in S?*). Let S : E — R be a gfqi for L,
normalized such that S(z,v) = 0 for the critical points in U. Define
S*:={z € B|S(x) < A}

Since S is quadratic at infinity the homotopy type of the pairs (S*, S*)
and (S*,S™*) does not depend on ) for large \. We may thus write

(8>, 57%) to denote (S*,S~*) for large X\. Denote by D* the unit ball
bundle of dimension k. We have (S, S~ >) ~ (D@ §ndQ-1) " where
ind(@ is the index of the quadratic form to which S is equal ‘at infinity’.

The Thom isomorphism 7" : H*(B) — H**md@ (5% §~) hetween coho-
mologies is shifting the grading by the index of Q° . For u € H*(B) we
define:

c(u, L) :=inf{\ | the image of Tu under the natural map
H*(S>,87>) — H*(S* S °) is non zero}.

In Proposition 3.10 we will prove that ¢(u, L) does not depend on S.
Furthermore we have:

Proposition 3.6 (i) c(u, L) is a critical value for S.

(ii) Let (v,v) € B x RN such that S(x,v) = c(u,L). If d*S(z,v) is
non degenerate we have ind d*S(z,v) = d + ind Q =: q where Q is the
quadratic form to which S is equal at infinity and d is the degree of the
cohomology class considered.

6Since the bundles we are considering are trivial, the Thom isomorphism is given
by the Kuenneth formula.
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Proof: (i) is an application of the minimax principle. Since S is quadratic
at infinity and non degenerate it satisfies the Palais-Smale condition. If

¢(u, L) = ¢ were not a critical value we would have that S°T¢ ~ S“ ¢, hence
H*(S¢te, §7>°) =2 H*(S7¢,87). But in H*(S°"¢,S7%°) the element Tu
is non zero and in H*(S¢7¢, S™>°) it is zero.

(ii) We consider a non degenerate critical point on level ¢. Since we
are working in cohomology we can assume that there is only one critical
point on level ¢. Consider the triple S~ C S“ ¢ C S°*¢ and its exact
cohomology sequence induced by the natural inclusions

5%

— HI(ST,8°7¢) L HI(S“TC, 57) AN HY(S¢,57%) —
With the natural maps
HI(S%, §7%) L5 (9o, 9=)

we have j* o j%(Tu) = j*(Tu). By definition it holds that j*(Tu) = 0
and j%(Tu) # 0. Consequently j*(7Tu) is in the kernel of j*. Due to
exactness there is a non trivial element in H?(S“", S7°).

By looking at S in a Morse chart we see that (S¢t¢, S¢=¢) ~ (DF, Sk=1)
where k is the index of the critical point. Hence

R qg==k

0% HY(S,5°) = HY(D", §*') =
0 else

Hence d 4+ ind Q = g = k. O

Proposition 3.7 Denote by TX(B x B) the restriction of T*(B x B) to
the diagonal A of (B x B). Let Ly and Ly be Lagrangian submanifolds of
T°B.

Assume that Ly x Ly is transverse to Tx(B x B). Define

Li+Ly:={(¢,p) € T"M | p=pi+p2 (¢.01) € L1, (¢,p2) € Lo}

i) In this situation Ly + Ly is a Lagrangian submanifold of T*(B).
ii) Let Sy and Sy be generating functions for Ly and Ly. Define

S18Ss(z, v, w) = Sy (z,v) + Sa(x, w).

Then S14Ss is a generating function for Ly + Lo.
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This is proposition 3.2 in [V2]. O

Proposition 3.8 Denote by u U v the cup product of two cohomology
classes u and v. Then

c(uUwv,514Ss) > c(u, S1) + c(v, Ss)

This is proposition 3.3 in [V2]. the proposition is the crucial tool in
computations of the ¢(u, L). In his diploma thesis, Stefan Born, [Bor]
has found a simplified proof which we shall present here. To this aim we
first present the following result for the cross product of two cohomology
classes.

Proposition 3.9 Let By and By be two closed manifolds. Let Sy + Sy :
E; x Ey — R be a generating function for Ly x Ly C T*(By x By). For
the cross product uw x v € H*(By x By) we have

c(u x v, 81+ Sy) = c(u, S1) + ¢(v, S).

Proof of proposition 3.9: Denote by )1 and Q)5 the quadratic forms to
which S; and S, are equal at infinity and by ¢; and ¢, the indices of these
forms.

We have a commutative diagram

H* (S} x S§,8, %% S,%)  «— H*((S1+ S)*M*, (S1 + S2)~)

T T
H*(S5° x 852,57 x S5%°) «—  H*((S1+ 52)=,(S1 + S3) ™)
T T x 15 T T
H*~1=%(B x B,) — H*~0=%(B; x B,)

which shows c¢(u x v, S + S2) < ¢(u, Si) + ¢(v, S2).

For the other inequality we assume that A\ < c¢(u,S;) and p < c(v,Ss)
are not critical values. The long exact sequences of the triples S;7> C
S} C S® and S;* C S5 C S5° guarantee the existence of classes i €
H*(8*,5}) and © € H*(S5°, S4) whose images are Tyu and Tyv.

Their cross product in H*(S¥ x S§5°, 57 x 8¢ U S x S¥) is mapped on
T(u x v). Hence we have from the long exact sequence of

ST x S7°° C S} x S USSP x SEc 8 x S5°
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that the image of T'(u x v) in H*(S7 x S U S x S§ S x S;°) is
zero.

The critical points of S; 4+ S, are in a compact set. Hence we can choose
K such that

H*((Sy + S)MP N K, (S) + S5)®° N K) =2 H*((Sy 4+ So)MH, (S1 + S5)%).

Considering the inclusions’

((Sy + S)MP N K, (S) 4+ S5)"* N K)
Ly (9] x S US® x SE ST x §5%)

and

J2

(57 x SPUS® x S, ST x S5) & (8 x S3°, 87> x S57°°)

we get maps

T(uxv) € H*(S xS S57% %x5,%°)
T (S X S U ST x B S x Sy )
I H(S1+ S)MEAK, (81 + o)™ N K)
= H((S1 + So)M, (S) + So) ™)

where j§(T(u x v)) = 0.

Hence T(u x v) is mapped to zero in H*((S; + Sy)M#, (S; + Sp)~).
Consequently

c(u x v, Sy + Sg) > c(u, S1) + ¢(v, S).

Proof of proposition 3.8: Consider the commutative diagram

"Here our notation hides the problem. S* means S” for v large. (S; + So)
does not embed in S x S¥ U SY x S§ but (S; + S2)*# N K does.
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(S18S:) < (S) + So)

{ {
($1£9:)° S (S) + 83)>
7 I
B & BxB

The Thom isomorphism T : H* 9 %2(B x B) — H*((S; + S2)*=,(S1 +
Sy) ™) is given by Tu = m*uUf where € H*((S1+S)>, (S1+52) ) is
a Thom class. The restriction of § to each fibre generates the cohomology
of this fibre. Hence A*(f) is a Thom class of ((S1£52), (S14S2)~>°). Note
that w Uv = A*(u x v). Consequently

A (" (uxv)UB) = A*(r"(uxv))UA*(H)
= 7 (A%(uxv))UA*(0)

We get a commutative diagram

H*((S1852)%, (S1852)7°) = H*((S1 + S2)*, (S1 + S2)™>)

0 0
H*((51852)%, (51852)7%°) < H*((S1 + 52)*, (S1 + S2)™%)
AT 4T
H*—11—q (B) P H*~11—q2 (B X B).

If u x v is mapped to zero on the right hand side it is mapped to zero on
the left hand side. Consequently

c(uUw, S185) > c(u x v, 81 + S3) = c(u, S1) + c(v, Sy).

O

Proposition 3.10 The value ¢(u, L) of the critical point of S does not
depend on the choice of the generating function S.

Proof: It is clear that ¢(u, L) is independent of equivalence and adding
of a constant. We only have to deal with stabilization. We may assume
that S; and Sy are gfqi for L where S; + () = Sy with a quadrati form
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( independent of the base point. We get by proposition 3.9 applied to
B x pt:

c(u, S1) = c(u x 1, 81 + Q) = c(u, Ss)

O
Corollary 3.11 Let u,v € H*(B). Then
c(uUv, (L)) > c(u, L) + c(v, (0B)).
This is corollary 3.6 in [V2]. O

3.4 Capacities for symplectic diffeomorphisms

Let H : RxR?* — R be a Hamiltonian function with compact support in
the R*"-component. The Hamiltonian equations ¢,(z) = —JH'(¢,(z))
define the Hamiltonian flow ¢,. For ¢t = 1 we abbreviate the time one
diffeomorphism by ¢, = ¢.

If H is time independent then every fixed point x = ¢(z) corresponds to
a periodic orbit of the flow.

We consider I', the graph of ¢. It is a Lagrangian submanifold of (R?™ x
R*™, —w ® w).

We can identify (R?" x R?", —w @ w) with (T*R**, w) through the map

T:(qap;QJﬁ)H (gagaﬁ_p;q_Q>' (2)
Note that for the diagonal A C R*™ x R*" we have 7(A) = Op.gen.
Hence 7(I'y) coincides with the zero section outside a compact set since
H is compactly supported. Considering R?" as the punctured sphere
S\ {P}, P the north pole, we get symplectic embedding T*R** —
T*S?": Any diffeomorphism R?*" — S?* \ {P} can be considered as a
chart of S?". The associated chart of the cotangent bundle constitutes
the desired symplectic embedding T*R?® — T*S?". We can compactify
the image of 7(I'y) by adding the point (P,0).

We thus get a Lagrangian manifold fsp in 7*52", This manifold is isotopic
to the zero-section via @ := 7(id x )7~ extended to T*S?". This ¢ is
the time one diffeomorphism of the Hamiltonian (0 & H)7 .
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By the existence and uniqueness theorems fgo has a unique generating
function quadratic at infinity normalized such that the critical value corre-
sponding to the pole is zero. To every critical point (z, v) of this gfqi there
corresponds a fixed point z of p: z = m7(x, z) where 7, : T*S*" — S
is the projection map.

Definition 3.12 For 1 € H°(S*") and u € H?"(S*"),the orientation
class, we define the capacities of symplectic diffeomorphisms to be

ci(p) = —c(1,Tp); e () = —c(.Tp); (@) = ci(p) — ().

The reason for the minus sign is to get a suggestive formulation for a
positive Hamiltonian, see the next Proposition, part (vii): If ¢ # id is
associated to a Hamiltonian H > 0, then ¢y (¢) >0, c_(¢) = 0.

There is a set of propositions we shall need to compute the capacities in
the proofs of theorem 5.4 and 6.1 later on.

Proposition 3.13 Let ¢ and ¢ be symplectic diffeomorphisms with com-
pact support. The symplectic invariants cy, ¢ and v have the following
properties:

(i)  cilp) >0 and c(p) <0  (p)=0 <= p=id
(i)  ci(p)=—c(p™)

(1ii) i (V) < i (¥) + ci(p)

(iv) - (p) > c_ () + c(p)

(v)  c-(p) < () + i (o)

(vi) (o) > ci(ih) + ()

(vii) Let 1y be a conformal symplectic isotopy, i.e. we assume
Yjw = A(t)w for a differentiable function A(t) > 0. Assume
that o = id. We then have cx (Yo, 1) = A2(t) e ().

In particular we conclude that d(v, o) := y(¢ ') defines a bi-invariant
metric on H°(R*").

Proof: These relations are proved in [V2] except for (v) and (vi), which
can nevertheless be proved similarly to (iii): We have I'yp = ¢I'y and
therefore

77;1:‘90 = "Z}TFQO = (7’ (¢] (Zd X ’17/})7'_1)7'1—‘80 = Trwgp = f‘w(p



26 3 GENERATING FUNCTIONS

We thus have in view of corollary 3.11

B  e@p) = Unly)
=c(lUu,yTp) > c(1,Tp) + c(u,(0p)) = c(1,T¢p) + c(u,Ly)
= —ci(p) — e (¥).

Finally, (vi) follows from (v) and (i). O

Proposition 3.14 The following relations hold:

(i) Let Hy < H,. For the associated time one diffeomorphisms @', 0* we
have

ci(p") < ex(9?).

(ii)Let ¢ and @ be symplectic diffeomorphisms with compact support such
that the support of ¢ is in U and p(U)NU = 0. We then have

c+(py) = cx(p) and ey () < ().

See corollary 4.5 and proposition 4.6 in [V2]. O

We have two kinds of continuity.

Proposition 3.15 (i) Let Hy and H; be two compactly supported Hamil-
tonians. Let @' and ©? be the associated time one diffeomorphisms. If
|Hy — Hslc, < € then we have |y(ot) — v(p?)| < €. The same holds for
cy and c_.

(11) cy, c_ and v are continuous on H°(R?*") for the C°~topology for sym-
plectic diffeomorphisms.

See proposition 4.14 and 4.15 in [V2]. O

Assume that ¢ is the time one diffeomorphism of a compactly supported
Hamiltonian H. Let z be a point outside the support of H. Then
S(z,0) = 0 where S is a gfqi for ¢. There exist critical points (x4, v) €
R x RV c §2" x RN of S such that

c+(p) = =S(z4,v) = =S(z4,v) + S(2,0)

We have the following representation formula which shows that the ca-
pacities are classical actions of certain paths.
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Proposition 3.16 If g : [0,1] — S*" is a smooth path connecting z
with x (respectively x_ ) then

Ci(%"):/ pdq—/ pdq:—</ pdq—Hdt).
9(t) Plg(t) Pylzx)

Proof: This is proposition 4.2(3) in [V2]. Since the proof of the first
equality is skipped in Viterbo’s papers we perform it here. To simplify
notation we only proof it for ¢, with x = x,. Let S be a gfqi for ¢. Denote
by g a path from (z,0) to (z,v) such that g(¢) € £s* and i(g(t)) = g(2).

We have
ci(p) = _S(f’ v) +5(2,0) = =S(3(1)) + 5(9(0))
= —/O < dS(§(t)|g(t) > dt.
Consider the path () = (g(t),dS(g(t))) € T*(S*™ x RY). Its tangential
is given by

T3(t) = (5(1),dS(5(1)), 9(1), *S(9(1)) - 9(1)).
With the Liouville form A = pdg on T*(52* x RY) we have

CJF(SO):_/@S\:_A_%S\:/[}@

where 4o = (§(£),0), @ the symplectic form on T*(S*" x RY) and D a
disc bounded by 4 — 4y with the right orientation.

Considering the symplectic reduction 7 : Ey — T*R?" we observe that
Iy = 7Ty is the image of the manifold

{(:E, U), dS(l‘, U)}(m,v)eT*(R%xRN) N Egq

and Op-ge» is the image of O« (gon (gr).

For elements a; and a in T*(R?" x RY) we have @ (o, ) = @(may, mas)
where @ is the symplectic form on T*R?". Applying 7! yields the fol-
lowing formula on (R?" x R*", —w @ w) .

er(e) = [ (rwew)

8% 5 is the critical set along the fibers, see definition 3.1.
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In this formula D is a disc bounded by v — v, the projection of 4 — 4.
We have that v(t) = (g(t), ¢(g(t)) and 1o(t) = (9(t), 9(%)).

Indicating by ¢ and p coordinates on the second R?" we conclude

o) = [(wow) == [y

Since v, does not give a contribution we have

ci () =/ pdq—/ pdg.
g9(t) v(g(1))

For the second equality of the proposition we are reduced to computations
on R?",

To apply Stokes’ theorem once more we consider ® : (s,t) — ¢,(g(s)).
The four paths

mose g(s) =9(s,0)
T2 ot p(x) = @(1,1)
Y3: s pig(s) = (s, 1)

Yot p(2) =9(0,8) =2

bound @ i.e. v + 2 — v3 — v4 = 9(®([0, 1]?)).
We have ¢, (p) = + f% pdq — fyg pdg and f% pdg = 0.

Furthermore we have

/ (®(s, 1), 1) H(D(s, ), £)dt = / Hat
o([0,1]2) (v2(1))

since the first and third path do not depend on t and the fourth path is
constant.

We conclude

1
((I)(S: t)a t)*(pdq - Hdt) -
([0,1]2)

(®(s,t),t)"d(pdg — Hdt) —

cilp) = (®(1,2),1)" (pdq — Hdt)

—

/ l(wt(x), t)*(pdg — Hadt).
([0,1]2) 0
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It is left to show that [, .\ (®(s,t),?)*d(pdq — Hdt) = 0. Define ¥ =
(®,t). We have

(®(s,t),t)"d(pdq — Hdt) = ioviay (d(pdq — Hdt))(dt A ds).

t

With 28 = (¢, 1) = (X#(¢(t),1) we compute

1
Z'(aa_t)(dp/\dq_d]—[/\dt) = —w(Xy,)—dH(Xy)dt+dH -1

= —w(XH,-)—w(XH,XH)dt—i-w(XH,-)
= 0.
O

Furthermore we shall need later on the following proposition from [Bor]:

Proposition 3.17 (Born) Let H(xz,t) be a Hamiltonian function on
0, 1] x R®™ with associated flow ¢,. We then have

sup H(z,t)

z,t

o
+
S
IA

"
s
\Y

in{H(a:, t)

=
S
IA

sup H(z,t) — intfH(x, t).

z,t

Proof: We prove the statement for ¢,. For every k£ € N we can break the
flow up to get

p1=(p10 901_,11/k) o (@118 © %01_,12/;) - (pryp o D).
By proposition 3.13 (iii) we have

k
ci(p) < Z C+(901'/k © 901'_711//7:)'
i=1

One observes that 1! := Pi/k © gp;ll/k is the time one diffeomorphism of

Hi(z, 1) = %H (:1: %) .
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We find fixed points x; of ¢ such that for z;(¢) := v}(z) we have
‘ 1 1
C_|_(77Dl) = / 5 < Jx;, x; > dt +/ Hz(l‘l,t)dt
10 1 0
< 5 [ il il +sup B
2 Jo

1 1
< Sewn(H)) [ [lnlde-+ sup
0

1
< 5 sup(H) - sup(H) + sup H,

1 1
2—}{:28upHI-I'||2 + %supH

IN

Consequently,

1
e4(¢) < sosup ||+ sup H

and taking the limit & — oo the first claim follows. The second state-
ment is proved in the same way and the third statement follows from the
definition. O

From proposition 3.17 we conclude immediately that v(yp) < E(¢) where
E is Hofer’s diplacement energy from theorem 2.4.

Definition 3.18 For a compactly supported Hamiltonian H : [0,1] x
R* — R with associated flow @, and fized point x of @, the Hamilto-
nian action s

1
Ap(z) = / pdq—Hdt:/ —SA— Hdt
@, (@) P, (@)

1
— / S < —Ju,->—Hdt
QOt(:E) 2

The action spectrum is:

A(H) = {/ A— Hdt|¢,(x) is a fized point ofcp}.
P, (@)
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Proposition 3.16 shows that the capacities are represented by the Hamil-
tonian action of a Hamiltonian function. The Hamiltonian action is an
important, well-studied, subject in symplectic geometry. We have the
following propositions:

Proposition 3.19 If H and K generate the same time one diffeomor-
phism ¢ we have for a fived point x

This is Lemma 5.1 in [HZ]. O

Remark : For ¢!, ¢? with associated Hamiltonians H; and H, we consider
0 = ¢?op'. We can view ¢ as time two diffeomorphism for the Hamil-
tonian H with H(t,x) = Hy(t,x) for t < 1 and H(t,z) = Ho(t — 1, )
for t > 1. In our context it does not matter that H is not continuous for
t = 1. We have for

o(f) = o} (z) for t € [0,1]
)= {go%_lw%)(a:) for t € [1,2

Vi (z+) Pipi(z+))
2 1 2

_ (/ :m_/ Hy (2(t), 1) dt—/ Hy(x(t), 1) dt).
0 0 1

Proposition 3.20 The action spectrum is compact and nowhere dense.

This is proposition 5.8 in [HZ]. O

The previous proposition is a massive restriction of the values the ca-
pacities cL(p) can take. Together with the continuity of the capacity
(proposition 3.15) the above proposition is a useful tool to compute ca-
pacities as we will see in the proofs of theorem 5.4 and 6.1.

On account of Proposition 3.14 (ii) there is an upper bound for ¢, ()
with support in U given by 7(¢), therefore the following capacity is ¢(U)
is finite for bounded open sets U.



32 3 GENERATING FUNCTIONS

Definition 3.21 For open sets U we define the capacity

c(U) = sup{cs (@) | ¢ has compact support in U}
This can be used to define the capacity for arbitrary sets

Definition 3.22 The capacity of an arbitrary set ¥ C R?" is
c(X) :=1inf{c(U)|U open and bounded, ™ C U}

Proposition 3.23 ¢: ¥ — ¢(X) € [0,00] defines a capacity in the sense
of the axioms of definition 2.2.

Proof: The monotonicity axiom is clearly satisfied. In the next section we
show that the normalization axiom is satisfied. As for the conformality
we observe that to every @ € H°(R?") with support in U we find an
associated Hamiltonian H with support in U and a time independent
Hamiltonian H > H. We can deform H to a Hamiltonian with support
in aU via the homotopy

Hé(z) = (1 —(1—a)s)’H((1 - (1 —a)s) 'z).
and prove

Lemma 3.24 Denote by ¢ the time one diffeomorphism of H*. It holds
that

2

ci(9%) = a’c(p).

Proof of lemma 3.24: If x(¢) is a periodic orbit of ¢ then z,(t) = ax(t) is
a periodic orbit of ¢*:

ai(t) = ag(r) = —aJH'(p,(x))

= —aJH'(a tayp,(z)) = —TH. (ap,(z))

Considering the Hamiltonian action we get

Oy (ax) = /(—w(ozx(t),a:t(t)) — H,(ax(t)))dt
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Since the action spectrum is compact and nowhere dense and since the
capacity depends continuously on the Hamiltonian we have ¢, (p®) =

a ey (p). O
The proof of proposition 3.23 is now easy: Since ¢ <> ¢ defines a one to
one correspondence between symplectic diffeomorphisms having support

in U and in aU, we have c(aU) = a?c(U). The proof of proposition 3.23
is finished. O

In theorem 5.4 we show that for strictly convex hypersurfaces ¥ and
bounded sets U with 0U = ¥ we have ¢(U) = ¢(X). In the next section
we give an explicit construction for the special case ¥ = S?"~! and show
that ¢(S?"7!) = ¢(B(1)) = 7 . Thus Viterbo’s capacities are non trivial
and normalized.

3.5 Viterbo’s capacity of the sphere

This section gives an explicit construction to prove that the Viterbo—
capacity of the sphere is 7.

For the disk of radius r we have:

Proposition 3.25 (Viterbo) c¢(B*'(r)) = 7r%.

We prove this proposition together with the following proposition:
Proposition 3.26 ¢(S**"1(r)) = 7r2.

Furthermore we show that the capacity of the symplectic cylinder

Z7(r) = {(x1, ... Ty Y1s . yn) € R |22 4y < 1%}

is 712 as well.

Proof: We only consider r = 1. Denote by B(1,1) the disc of radius 1,
centered at (1,1).

We first construct a Hamiltonian h such that for its time one diffeomor-
phism ¢ we have

0(B(1,1)) N (B(1,1)) =0
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and v(¢) < 7 + € so that by proposition 3.14 the capacity of the disc is
estimated by ¢(B(1,1)) < 7r2.

Consider f(y) =24/1+¢— (y —1)2. For a function F with F' = f and
F(0) = € we have F(2) = 7 + €. Define

F(y) on [0, 2]?
h(z,y) = ¢ 0on R?\ [—¢,2 + ¢]?

smooth in between

such that %(xﬂ +¢/2) = 0 for z € [0,2] and h(z,y) > 0. We have
h(z,2 +¢€/2) =7 + €.

The only 1-periodic orbits of ¢, are the equilibrium points (z,2 + €/2)
where the derivative of h vanishes. By definition of the capacities ¢, (¢) =

m+ € and c_(p) = 0. Since € and € are arbitrary small we conclude
¢(B(1,1)) < .

We next show that for the symplectic cylinder Z?" of radius 1 we have
c(Z*) < .

For a bounded subset U C Z?" of diameter at most d consider the time
one diffeomorphism of

H(zi, oo syt yn) = 922, oo s s y2, s yn)|) - Bz, y1)

where ¢ : R — R is a smooth function with slope smaller than 27 -
(2R)such that

_ J1on|0,2R]
~ 10 on [3R, ]
where R > 7 and R > d.

The time one diffeomorphism ¢ of H satisfies ¢)(U)NU = (), and the only
one periodic orbits are as above equilibrium points having the action 7+e.

We conclude by definition of the capacity that ¢(Z?") < .
We next prove that ¢(B**(1)) > .
Given 0 €]0, 1] we define a function ¢ : (0, 00) — R:

0 fors>14+460,s<1—¢

gs(s) = 2n(1—46) fors=1
affine linear in between
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27(1 — 6) 27 (1 — 6)

—-1-0 14946 1-6 1—|—5R2n

Figure 1: H;

Define Hs(x) = gs(|x|) (see figure 1).

In the linear part of Hy the slope is i%(l % . Since Hj is not smooth we

can consider the Hamiltonian equations in the linear parts only

The length of a periodic orbit of the Hamiltonian flow is 27n|z|. We are
interested in one periodic orbits. Hence the length of the orbit has to be
equal to the slope. The condition we get is thus:

27(1 — 0)
)

We find a sequence 9, such that there are no non constant 1-periodic
orbits for ¢y, :

—onm(1+b), be€l0,d],

i.e.

For every n € N we take 0, = 0 5 ¢1Tand

T S

1
-1 &= — = 1.
n

1—6¢

Furthermore we have to prove: — > % = 1-24, < 1+5 ;=
1 — 4, — 202 < 1— 6, which is true, so that we have found the desired
sequence.

For every ¢ in our sequence we will construct a smooth version of Hj

(which we will call Hy, too) that has no periodic orbits z(¢) with

—Ap,(x) = /01 1/2 < Jx, & > dt + /01 Hs(z(t))dt €]0,m — €]
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where € — 0 as § — 0. Since the flow ¢4, of Hs is non trivial, ¢} (¢z,) >
0. Since ¢(S?" 1) < ¢(B**) = 7 this will prove ¢(S**~1) = 7.

The smoothened version of g5 differs from the original one in the following
four regions (see figure 2). Here a and b are real numbers with a << §2/2,
b=2ra'3l.

5

1. 1—=01—-6+a] withgj>0, gs(1—6+4a)=0b
2. |1—a,1] with g5 >0, gs5(1 —a) =2(1 =87 —b
3. 1,144 with g5 <0, gs(1+a)=2(1—-8)m—b
4. N +6—a,1+6[ withgj<0, gs(1+0—a)=0h

T—0 1 +

Figure 2: g5, smoothened

For a 1-periodic solution we must have

Hs()| = |g5(|z))/|z] | = |g5(1z])] = n2w|z]

for some n > 0 (the solution is not constant).
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Region 1. Here we have

— Ay, (z) :_qﬂm<ﬂu@>—/mMWW)
— /1/2 < Jz,—Jgi(|z))z/|z| > +/Ha(fr(t))dt
= [z <agllae)al > + [ Hatro)d

= —g'(|z)|z|+d
= —nrlz/*+d<0
with d € [0, b].

Region 2: —Ap,(z) = —n7|x]* 4+ 27(1 —§) —d with |z] = 1—e, e € [0, a].
For n =1 we have — Ay, = —7m(1—e)?+27(1—§)—d > 7w —e. Forn >3
we have — Ay, < 0.

For n = 2:

~Ap,(z) = —27(1—e)?+27r(1—6)—d
= 21(2e—€*—6)—d <0

Region 3: Here g5 < 0. Hence ¢§ = —2nr|x|.
—Ap,(z) =nrjz? +27r(1 —0) —d > 37 — 6 — d > 2.
Region 4: —Ap,(z) = nrwjz]*+d > 7 +e

Hence @y has no fixed point with Hamiltonian action in the interval
[0,m — ¢[. Consequently c;(¢y,) > 7™ — . Taking the limit 6 — 0 (and
e — 0 ) we get the desired estimate. O



38 4 THE MASLOV INDEX

4 The Maslov index

In the last section we associated to a symplectic diffeomorphism ¢ the
Lagrangian submanifold 7T () and found a generating function S for
7T (¢). To fixed points = and y of ¢ there correspond critical points (z, v)
and (y,w) of S.

In [V1] C. Viterbo observed that the difference
ind d*S(z,v) — ind d*S(y, w)

is independent of the particular generating function chosen and related
to the Conley—Zehnder index defined in [CZ].

Theret in [Th] used this index in the more general setting of paths of
Lagrangians. He proved directly that this index satisfies the axioms of a
Maslov index as defined by Cappell, Lee and Miller in [CLM].

In fact there are several possibilities to generalize the Maslov index as
defined in [A]. In appendix B we compare some indices.

In this section we describe Theret’s ‘generating function approach’ to the
index and prove a ‘generic formula’.
4.1 Linear Lagrangians

Let L C T*R" be a Lagrangian and S : R” x RY — R a generating
function for L. Remember that g is the critical locus of fibre critical
points of S and ig : X5 — T*R" is a Lagrangian immersion such that
is(Xs) = L.

We need two preliminary observations.

Proposition 4.1 Let S : R® x RV — R be a generating function for
L C R*™. If (z,v) € S5 with is(x,v) = 2z € L then for (r,s) € R" x RY

Q:R"xRY =R ; (r,5) = d*S(x,v).(r,s).(r, s)
15 a generating function for T,L.

Proof: T, L is the image of

dis(z,v) : Tz S — TR,
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We have to describe T(;,)¥ and dig(z,v). Observe that dQ(r,s).(7,5) =
2d2S (z,v).(r, 5).(r, §)

We have defined X5 to be

S5 = {(m0)] 5o a) = 0)

= {(z,v)|dS(z,v).(0,3) =0, V5 € RN},

Hence
T = {(r,8) | d*S(z,v).(r, 5).(0,3) Vi e RV} = {(r,s) | %—g = 0}.
Furthermore ig(z,v) = (z, 22(z,v)) = dS(x,v).(.,0). Hence
dig(z,v)(r,s) = (r,d*S(z,v).(r,s).(.,0)) = (r, g—?)

O

Denote by A(n) the set of all Lagrangian subspaces of (R?", w) with the
standard symplectic form w =< J-,- >. The Maslov index will associate
to every path v : [a,b] — A(n) an integer.

To this end we need quadratic generating functions (generating forms)
for v(¢). The problem is that our existence and uniqueness theorems are
proved so far for paths of Lagrangian submanifolds coinciding with the
zero section outside a compact set and starting from the zero section.

Since A(n) is path connected we can introduce a new path ¥ : [¢,b] —
A(n), ¢ < a with ¥(c) = R™ x {0} and (a5 = 7.

By theorem 3.4 we find a path of generating functions for 4(¢). The
construction in [S] shows that these functions are in fact quadratic forms
Qi :R" x RN = R, (z,v) = Q4(z,v) generating ().

Proposition 4.2 The difference ind QQ, — ind Q, is well defined.

Proof: The proof of theorem 3.5 works in the case of linear Lagrangians
instead of Lagrangians coinciding with the zero section outside a compact
set. Consequently (); is unique up to equivalence and stabilization.

Instead of proving this and since we only need unigeness of the difference
of the indices we proof the proposition by using theorem 3.5.
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We choose a Hamiltonian H such that for its flow we have ¢,(R" x {0}) =
v(t). We find a cut off function x : R*" — R such that for a ball of radius
R we have x(B(R)) = 1 and x(R** \ B(2R)) = 0 with R so great that

for the flow ¢ of H = x - H we still have ,(0) = ¢,(0) and Ty, = Top,-
Let S; be a family of generating functions for ¢,(R™ x {0}).

Let S’ be a second family of generating functions for @,(R" x {0}). We
observe that due to the uniqueness theorem the indices of d>S(z,v) and
d?S'(z, ") at points which generate the same point in L only differ by
the index of a quadratic form with which we have stabilized. This does
not affect the difference of two indices. Consequently our definition is
independent of the particular gfqi for @(R™ x {0}) chosen.

We now look for the relation between @, and S;. We can homotop from
v(t) to @,(R™ x {0}) by considering s - xH.

During the homotopy the parts of the generating functions generating
points in B(R) don’t need to change. Outside B(R) the generating func-
tions change. In particular we might have to stabilize with a quadratic
form () and then compose with a fibre preserving diffeomorphism. These
operations do not affect the difference of indices of critical points (z, v)
with ig(z,v) € B(R).

Consequently, given ), and two gfqi S' and S? corresponding to two cut
off functions we have for points generating the same point in B(R) that
indQ, = indS} — indQ" = indS? — ind@?. This shows that our definition
is independent of the cut off function chosen.

A similar argument shows that it is independent of the particular @
chosen: For two paths @y and @} of generating forms we have with the
same cut off function indQ] + ind@Q" = indS; = indQ? + indQ?.) O

4.2 The Maslov index for a path of Lagrangian vec-

tor spaces.

In view of proposition 4.2 we define

Definition 4.3 For a continuous and piecewise differentiable path ~ :
[a,b] — A(n) of Lagrangian subspaces in R?*"the Maslov index uy(7) is
the integer defined as

v (7) = ind Qy — ind Q,
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where Q; is a path of generating forms for ~(t).

Remarks: (i) The subscript V' refers to ‘Viterbo’ and indicates that this
is not the standard index.

(ii) py(y) measures with multiplicities how often v intersects the distin-
guished horizontal Lagrangian plane R" x {0}. The form Q) is non degen-
erate in the fibers since T%—g has maximal rank, see definition 3.1. The
index ind@; can only change if rank(d@) < n+k, that is if rank(%) < n.
This is equivalent to dim(y(¢) "N R™ x {0}) > 0.

The Maslov index has the following properties:

Proposition 4.4 () satisfies
(i) Affine scale invariance:

For k> 0 andl > 0 consider the map 1) : R — R defined by ¢(t) = kt+1.
Then

pv () = pv (v o).
(ii) Deformation invariance:
IfT': (s,t) = (s, t) is a parametrized surface in A(n) then
pv(T(-, 1)) = pv(T(-, 0)) = pv(I(1,4)) = v (T(0, -).
(117) Path additivity:
If v : [a,c] = A(n) and ¢ > b then

v (1) = v (V) + v (V)

(iv) Symplectic additivity:

Let 7 : [a,b] — A(n) and § : [a,b] — A(m). For the direct sum
Y@ :[a,b] = A(n+ m) we have

pv (v ®6) = pv () + pv(6)

(v) Normalization:

Define v : [—m, 7] = A(2) by the formula

Y(t) = Re = {(rcost,rsint) |r € R},
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then
v () [-ra0 = —1
v (7o) ljo,ra = 0
v (Yo)=rjampy = —1
pv(n) = —2.

Proof: (i),(iii), (iv) are clear. To prove (ii) we consider a family Qs of
generating forms for T'(s,t). We compute the index along the path v,
which is defined to be I'(s,0) followed by I'(1,¢). By path additivity

indQl,O - indQO’g + indQl,l - indQl’g = indQl,l - inQg’O.

We obtain the same result by considering the path v, which is T'(0,?)
followed by T'(s,1). This proves (ii). As for (v) we only have to observe
that a generating form for v|[_r/4,x/4) and for ¥|(zz/a5r/4) is Q¢ (7) = 352z,

Since () has intersection with R™ x {0} only for ¢ = 0 and 7 this yields
the result. O

4.3 The Maslov index for a path of symplectic au-
tomorphisms

Consider a linear symplectic automorphism ¢ € Sp(n). Remember that
the map 7 from section 2 identifies (R?" x R?", (—w & w) with T*R?".
Hence 7(T'(¢)) is a linear Lagrangian subspace in T*R*" and so has a
generating form (). In the following () is called a generating form for ¢
though () generates, more precisely

L = {r(z,¢(z)) |z € R}
= {r(I x ¢)77"(2,0) |z € R*"}

For a path ¢ : [0, 1] — Sp(n) we define the Maslov index

pv(9) = pv (TT(0)).

This Maslov index has the properties of affine scale invariance (i), defor-
mation invariance (ii), path additivity (iii) and symplectic additivity



4.3  The Maslov index for a path of symplectic automorphisms 43

(iv) from proposition 4.4. As for the normalization we get: Consider the
path of symplectic automorphisms

sint cost

8 — 7, 7] ( cost —sint )

We compute with z = (¢, p) and ¢?(x) = (g, p).

ATTLIP 5 g q)
2 ) 2 ) )
1 1
= (5((1(1 + cost) — psint), i(p(l + cost) 4+ gsint),
p(1 —cost) + gsint, g(1 — cost) + psint)

Changing the coordinates

Zl:‘l(l—i—cos;)—psint and ZQZp(1+cos;)+qsint 3)

we get

2sint 2sint
r 0 t = RQn
@) = {2, 2 ) (o,m) e R

whose generating form is given by

sint

2 2
—(x" + .
1+ cos t( v)
One computes:

pv (90w ja0) = =2

1 (0°j0.2/47) = 0

v (%) xjamya) = —2

The Lagrangian plane 7'(¢(¢)) has non trivial intersection with R*" x {0}
if and only if ¢(¢) has an eigenvalue 1. Since the above path ¢° has an
eigenvalue 1 only for ¢ = 0 we conclude for the whole loop

v (0°]| ) = —2.

We next elaborate on the relation between the eigenvalues of ¢(t) and
py (@) for arbitrary loops of symplectic automorphisms.
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Definition 4.5 With ¢ € Sp(n) we associate the quadratic form q,(z) =
w(x, ¢x) and define the integer ind(¢) 1= ind qy.

Remark: The symmetric bilinear form associated to gy is

bs(z,y) = 1/2(w(z, 9y) +w(y, dx))
= 1/2(< Jx, oy > + < Jy, px >)
= 1/2(<z,—Joy >+ < ¢T Jy,x >)

so that by is given by ¢7.J — J¢ where ¢7 denotes the transposed map.

Proposition 4.6 Assume ¢ € Sp(n), then:
(i) If P € Sp(n) and + := P~'¢P then ind () = ind ¢

(i1) If ¢ does not have an eigenvalue —1 and @ : R* — R is a generating
form for ¢ then Q) is conjugated to q4, i.e. there exists a matriz A such

that ATQA = q4. Hence ind Q = ind ¢.

(iii) If ¢ : [a,b] — Sp(n) is a path such that (Ker(¢(t)* — I)) is constant
then ind (¢(1)) = ind (¢(0)). This is, in particular, the case if ¢(t) never
has the eigenvalues £1.

() If ¢ : [a,b] — Sp(n) is a path such that ¢(t) never has an eigenvalue
—1 then

pv(9) = ind (¢(1)) — ind (¢(0)).

Proof: (i) qy(z) = w(z, P~'¢Px) = w(Pz, pPx) = q4(Pz).

(ii) If —1 is no eigenvalue of ¢ then
L(¢) N{(z —2) |z € R*"} = {0}.
Consequently
7(C(#)) N {0} x R™ = {0}.
7(T'(¢)) therefore projects well on R" x {0} so that we can write

7(T(¢)) = {(2. 42) |z e R™"}
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with a symmetric matrix A. We have that Q(z) := 1/2 < z, Az > is

a generating form for ¢. Defining = = (¢,p) and ¢(¢,p) = (¢,p) and

applying the coordinate change z = (254, X2) we get that

(q +q pt+p
2 72
is conjugated to < z, Az >. We calculate

), (p—p.g—q) >

qtqg ptp, _
<( 2 7 9 )a(p_paq_Q)>
+q +p
= <q—2q,ﬁ—p>+<l%aq—5>

= <qaﬁ>_<Cj7p>
= w(z, 9z) = gy()

(iii) The index ind (¢(¢)) can only change where Ker(¢(t)TJ — Jé(t))
changes dimension. We compute

dim (Ker(¢(t)"J — Jo(1))) = dim (Ker(o(t)" Jo(t) — Jo(t)*))
= dim (Ker(J — J¢(t)?)) = dim (Ker(—1I + ¢(t)?))

(iv) is a consequence of (ii). O

4.3.1 A Generic formula

We define

Spr(n) :=={¢ € Sp(n) | dim ker(¢ —I) =k}

Proposition 4.7 Let ¢(t) : [0,1] — Sp(n) be a path such that there is
only a finite number of times 0 < t; < ... < t; < ... < ty such that
det(p(t;) —I) = 0. Assume that at these points det(¢(t;) + 1) # 0. If

d(1) € Spg, (n) we assume G(1),$(0) ¢ TSpy(n) for all k # 0.
Then it holds that

() = ind 6(e) — ind 6(0) + S, (ind G(txs.) — ind 6(tx )
+ind ¢(1) — ind ¢(1 — €)

for e > 0 small.
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Proof: By path additivity

MV(d)) 2% ¢)| 0,€] +uV( )|[e,t1—e}
N-1

+

(/’LV(gb) | [tk—e,tk—l—e} + /’LV(¢) ‘ [tk+6,tk+1—6})

=1
+/4LV(¢)|[the,tN+e} + MV(¢)|[tN+€,17€} + MV(¢)‘[175,1}-

On the intervals [e,t; — €] and [t; + €,t,41 — €] and [ty + €,1 — €] there
occurs no eigenvalue -1 for ¢(¢). Hence these intervals don’t contribute
to the Maslov index. On the other intervals we use proposition 4.6, (iv)
to compute the indices. O

The crucial point is that every path can be deformed to such a path in
view of the next result.

Proposition 4.8 Every path ¢(t) : [0,1] — Sp(n) can be continuously
deformed into a path satisfying the hypothesis of proposition 4.7 are sat-
isfied in such a way that the Maslov index remains constant.

Proof: We first need some facts about the structure of Sp(n). Let A(R?" x
R?") be the set of all Lagrangian subspaces in (R** x R*", —w®w). Define

Ag = {L € A(R*™ x R*™) | LN {0} x R*" = 0}

We define a map Sp(n) — Ag by ¢ — T'(¢). Clearly this map is injective.
It is also surjective: Denote by 7 : R?*® x R*® — R?" the projection
on the first factor. Since L € Ay projects well on R?*" x {0}, for every
x € R*" there is a unique vector (z, Pz) € L. Thus we have constituted
a linear map P : R* — R?". This map is symplectic. Indeed, since L is
Lagrangian we have for every z,y € R?"

0= (—wew)((z, Pz),(y, Py)) = —w(z,y) + w(Pz, Py).

Now Spi(n) is mapped onto

Ay = {L € A(R™ x R*") |dim LN A = k}.

This is a submanifold of codimension k(k + 1)/2 in A(R?*" x R?"), see
[GS], proposition IV.3.5.
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This shows that for 0 < ¢t < 1 we can deform ¢ such that it intersects none
of the Spy(n) with & > 1 and Sp;(n) only transversally. If ¢(1) € Spy, (n)
we can assume ¢(1) ¢ T'Spg(n) for all k # 0 and the same for ¢(0).

We now prove that we can avoid the eigenvalue —1 when there is an
eigenvalue 1.

Let ¢(t) € Spr(n). In a basis it can be written as

1%

01 10* 0
0o 0
o 0 0 P

with P € Spo(n — k). As above the sets

Spr(n) = {6 € Sp(n) | dim ker(¢+ 1) = I}

have codimension 1(141)/2 in A(R2" x R?"). Thus there is a P arbitrarily
closed to P without eigenvalue —1 and we can deform ¢(¢) such that it
crosses Sp(k) with det(¢(tx) + I) # 0. O

4.4 The Maslov index for a periodic orbit
We consider a path ¢ : [0, 1] — Symp(n), t — ¢, of (non linear) symplec-

tomorphisms and a periodic orbit ¢,(z). Define the Maslov index of the
periodic orbit by

pv(x) = pyv (dgi(x).
The most important example is given by the flow ¢, of a Hamiltonian

vector field. In this case dy;(z) solves the linearized Hamiltonian equa-
tions:

S (de(0) = —JH"(¢,(x)).dpy(z) ,  dipy(w) = Id.
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Proposition 4.9 Let ¢, be a path of symplectomorphisms with ¢, = I.
Let S; : R?" x R¥ — R be a family of gfqi for ¢y and z = (z,v) be the
critical point of Sy associated to a fixed point x of p,. Let Q. be the
quadratic form to which Sy is equal ‘at infinity’. Then

py (z) = ind d>S(2) — ind Qu.

Proof Define 1); := 7(I x ;)7~'. Then S; generates

Li = {t(x,0) |z € RQn} =71 ()

We define the path z(t) = ¢y(x,0) = 7(x,¢,(z)). We find a path ¢ :
[0, 1] — R?" x R* such that £(t) € Xg, and ig,&(t) = 2(t) and £(1) = (2, v).
By proposition 4.1, d?S(£(t)) generates

T,iLi = T, (7T(¢,)) = 7T (dpy()).

Hence by proposition 4.9

py(z) = ind d*S(2(1)) — ind d>S(2(0)).

In the definition of generating functions we assumed that outside a com-
pact set S is equal to a quadratic form ). Since ¢, = I outside a
compact set (), generates the zero section. Since ¢y = I the function S
generates the zero section as well.

We choose a point x4, outside the support of ¢ and a smooth path g(s)
connecting (e, 0) with 2(0) = (z,v) such that g(s) is in the critical locus
Ys,- Since Sy generates the zero section we see that d2S(g(s)) generates
the zero section. We have dim(Kerd?Sy(g(s))) = dim((7T(¢)) N R?" x
{0}) = 2n. Consequently, the dimension of the kernel is constant, and
the index of d?Sy(g(s)) does not change.

This proves

ind d?Sp(z,v) = ind d?Sp(2(0)) = ind Qu
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5 Viterbo’s capacities for strictly convex
hypersurfaces

A smooth closed hypersurface ¥ is called strictly convex if it has positive
sectional curvature. There exists a strictly convex set U such that oU =
Y. For simplicity we assume that 0 € U.

Hofer, Wysocki and Zehnder in [HWZ1] defined a generalized Conley—
Zehnder index. In [HWZ2] they considered a strictly convex energy
surface ¥ and a Hamiltonian function h such that A7'(1) = X and
h(rz) = r*h(x). They gave bounds on the index for periodic orbits asso-
ciated to the Hamiltonian flow of A.

In section 5.1.2 we do the same for Viterbo’s index. In section 5.1.3 we
generalize this to G o h with a smooth function G. In 5.2 we shall use
these results in order to prove that ¢(X) = ¢(U).

5.1 Maslov indices
5.1.1 Strictly convex hypersurfaces

Let ¥ be strictly convex.

From appendix A we know that associated to 3 there is a characteristic
line bundle Ly, — ¥, Ly, C TY defined by

Ls={(z,) e TE|w(&,n)=0forallneT,X}
This gives an integrable distribution on ¥ called the characteristic folia-
tion. We denote by Ls(x) the leaf through z € .
Since H'—TY we have that £ = JH' € Tx. For n € TY we compute

w(JH',n) =< —-H',n>=0.

This shows that JH' € Lx. Hence the orbits of the flow associated to H
are the leaves of the characteristic foliation. Furthermore

N(JH') =1/2 < J, JH' >= —1/2 < 2, H' ># 0

since ¥ is strictly convex. Consequently Alr,s # 0 for all z € ¥ and
=, = ker \;|p is a (2n — 2)-dimensional subspace on which w is non
degenerate. So A A w""! is a volume form on ¥. By definition A.1 that
means that X is of restricted contact type.



50 5 STRICTLY CONVEX HYPERSURFACES

5.1.2 The indices for Hamiltonians with H"” definite

Proposition 5.1 Let H : R*™ — R be a time independent Hamiltonian
with H='(1) = X. Let ¢, be the associated flow.For a periodic orbit
z(t) = p,(z) with dp,(z) € Spr(n) we have

i) py(r) >2 if H" is positive definite for all x € ¥
i) /Lv(x) < k if H" is negative definite for all x € X.

Proof of part i) We consider paths dp,(z) =: ¢(t) of symplectic matrices.
Since

d(t) = —JH".¢(t) < H" = Jo(t)(o(t)) "

the small perturbations leading to the formula in section 4.3.1 do not
affect the fact that H” is positive definite. The Taylor series of ¢(t)
begins with

Bt +€) = p(t) + ep(t) = ¢(t) — eJH"dg,(z) = p(t) — eJH"$(t),

neglecting terms of order O(e?). From ¢(0) ¢ T'Spy(n) we deduce

ind ¢(e) —ind ¢(0) = = ind (I —eJH")—ind (I) =ind (I —eJH")
= ind (I —eH"J")J — J(I —eJH"))

= ind (—2eH") = 2n
We now consider the indices for ¢ = ¢, with ¢, < 1. We abbreviate

é(ty) = ¢. Due to the deformations the eigenvalue 1 has multiplicity 1
and no eigenvalue —1 occurs.

We consider the flow of the eigenvalues of the symmetric operator T'(t) =
d(t)"J — J¢(t). Using Kato’s perturbation theory, [K]|, we observe that
there is a differentiable function A : [ty — €,# + €] — R where A(¢) is an
eigenvalue of T'(t) and A(¢;) = 0. (Theorem II.6.1 in [K]). We have that

ind ¢(ty +¢) —ind ¢ty —€) = —1 if Mt +¢€) >0

ind ¢(ty +€) —ind @t —€) =1 if Mt +¢€) <0
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We have to show that for H” > 0 the second case occurs. The first
coefficient in the Taylor expansion of ), giving the sign of A(e) is given
by formula 2.32 in paragraph I1.2 in [K]:

A = tr (T P) (4)

where TW) is the first element in the Taylor expansion of T'(t) and P is
the projection onto the zero eigenspace of T'(ty,).

We have
Ot + €)' T — Tty +¢)
= (¢p—eJH"$)"J — J(¢p — eJH"$) + O(?)
= ¢"J—Jp—e((¢"H"J")J — JIJH" ) 4+ O(e?).
Consequently

T(l) — —¢TH” - H”¢.

We choose a basis in which the matrices ¢ and P take the form
1 10
0 0
= 01 — 00
0 < 0 . ) and P < 0 0 ) : (5)

We compute:

tr TOP = tr ((—¢"H" — H"$)P)
= tr (P(—¢"H") — H"$P)

10 1o
- <_<000 U)H”—H”<UOO 0) ><0

since H" is positive definite.

If 1 is an eigenvalue of ¢(1) with multiplicity &, then as in proposition 4.8
it has no eigenvalue —1. Perturbation theory provides us with k functions
Aj i [1—€1] = R with A\¢(1) = 0 and % functions &; : [1 — ¢, 1] — R*"
satisfying T'(¢)&;(t) = A;j(t)&;(t). We may assume that all the &;(t) are
different for t # 1.
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Formula 4 is valid for an eigenvalue of multiplicity 1. Here we have to
use the reduction process of paragraph I7.2.3 in Kato, [K]. By formula
11.2.40,

N1 —e)=0—eV +0(1+9),
with § > 0. The coefficient )\51) is given by PjT(l)Pj where P; is the
projection onto R-&;(1). We choose a basis as in formula 5 and conclude

that A\;(1 —€) < 0 and hence

ind ¢(1) —ind ¢(1 —€) = 0.

Proof of part ii) Considering the spectral flow as in i) we find

ind ¢(e) —ind ¢(0) = 0
ind ¢(tk + 6) —ind ¢(tk — 6) = -1
ind ¢(1) —ind ¢p(1 —¢) = —k.

5.1.3 More indices

We can also compute the index for periodic orbits associated to Hamil-
tonians which are not definite but of the form H = g(v/h) where h is the
square of the Minkowsky functional m(z) = inf{\ |z € AU}. To this end
we need some preparations.

Define h = m? then hly = 1 and h(rz) = r?h(z). For z # 0 we have
h"(x) > al with a > 0.

Differentiating h(rz) = r2h(x) with respect to r one sees that
< B(rz),r >=2rh(x) <= < K (rz),rz >= 2r’h(z) = 2h(rz).
Consequently,
< h'(z),x >=2h(x).
Differentiating this equation with respect to x one sees that

< h"(x), x>+ < h(x),. >=2 < h(x), - >.
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We have

h'(x).x = 1 (z).
We now consider the Hamiltonian function H (z \/ x = g(m(x))
where g : R — R is a C?function with g(1 ) = 1 and ) # 0. For

reX=H"(1)=h""(1), H satisfies the equations

1
<z, H >=<uxz,d—=h >=¢(1) (6)

2Vh

and

1
H' =g E<hl >< W' > +¢'(—

4h3/2) <K, -><hW, ->4+¢—=hn"

and, since h =1

1 1 .
H' =g"7 <H,-><W > 4g/(=) <B - ><H > +g'sh" o (8)

H'z = —<h' 9
92f (9)

Define the vector field X (z) := —ﬁJH’(x), then X (z) € Ly, the char-
acteristic line bundle, defined in appendix A.

Proposition 5.2 With =, = ker \,;|sx and the above vector field X (x) we
conclude that
span(X (x),x) ® =,

is a symplectic orthogonal splitting of T,R?*" which is invariant under
dipy ().
Proof:

1

g'(1)

= —— < H'(z),2z >

g'(1) @)
1 (by equation 6).

JH'(z)),x >
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For ¢ € = we have

w(r,§) = A(§) = 0,

and since H'-T,%

w(X(x),&) = — < H'(z),£ >=0.

2¢'(1)

This shows that we have a symplectic orthogonal splitting. It remains
to show the invariance under dyp,(z). Since ¢, is symplectic we have
w(deg,, dg,) = w(,+). Therefore, Ly, and hence X (z) is invariant under

dipy (7).

We want to show
§x € Zp = dpy(2)€ € Egp,(a)
which is equivalent to
w(&;m) = 0 for all n € T,X = w(dp,(x)€,m) = 0 for all n € Ty ()%
Since pjw = w we only need to show that
n €Y < dp(r)n € Ty ()2

which holds since ¢,|s : ¥ — ¥ is a diffeomorphism.

It is left to show that dy,(z).x € span(p,(x), X (p,(x))). Since we have
the symplectic orthogonal splitting of T(pt(z)RQn it is enough to show that

w(dgot(a:)a:,g
w(x, de; M (x).£) =0 for all £ € 2o, (@)
)

w(z, &) =N (§) =0forall £ € =,

) =0 for all £ € Z ()

—
—

In the special case H(x) = h(x) we have

Py(x) = —TH'(py(x)) = —TH" (py()). 04 (2)

We remember that dy,(z).x is a solution of the linearized Hamiltonian
equations
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d

5 (@) = —TH (¢,(2)).dey().w . dpy(z).r = .

We see that ¢, (z) and dp,(z).x solve the same differential equation. Since
¢o(x) =z = dipy(v)., we have ¢,(z) = dyp,(v).x

We are now ready to compute the indices.

Proposition 5.3 Let g : R — R be a function with g(1) = 1. Let ¢, be
the flow associated to the Hamiltonian H = g(\/ﬁ) For a 1-periodic orbit
z(t) = () of the flow with dp,(x) € Spr(n) we have

i) py(x) > 2n if ¢'(1)>0 and ¢"(1) >0
/g (x) <=k if ¢(1)<0 and ¢"(1)<0
i) py(r)>2n—1 4f ¢'(1)>0 and ¢"(1) <0
' <—k+1 if ¢(1) (1)

Proof: Parts i) and ii) are special cases of proposition 5.1.

At first we observe that if we consider the Hamiltonian ¢H (z) with ¢ > 0
we get the same periodic orbits. If z is a fixed point of ¢, then ¢, () is a
periodic orbit of the flow associated to ¢H (x) and the corresponding path
of symplectic matrices is dg,,(z). So the Maslov index of the orbit is the
same. Consequently, by rescaling, we may only consider Hamiltonians
g(v/h) with |¢g’(1)] = 2 which will turn out to be convenient in view of
equation (8).

Proof of part iii)

We first consider the case n = 1 whose proof is different from the case
n > 1. Each matrix in Sp(1) can be uniquely written as ® = UP where
U € SO(2) and

P ell:={P € Sp(1)]| P is symmetric and positive definite }.

Since II is a contractible topological space the Maslov index of a path
é(t) is determined by the SO(2) factor: py(4(t)) = pv(U(t)). In polar
coordinates we have with positive functions f; and f:

H(z,y) = g(v/M(z,y)) = fi(r)- f(0) = H(r,0).
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Since ¢’ > 0 we have f{(r) > 0. Hence

Of 1 __R0AG) _,
o r r '

0 =
Hence every vector in R? turns in negative direction under the flow o(t).
This is also valid for dy,(x) = ¢(t). Therefore every vector turns in
negative direction under U(t). Consequently, after rescaling, U(t) is the
flow of a Hamiltonian of the form c(x? +?). This gives 2n > uy(U(t)) =

py (9(t)).

We compare the case n > 1 with H = h by using the splitting of propo-
sition 5.1. Instead of the index of ¢(t) we will compute the index in a
trivialization

Ty¢(t)Ty "« span(X (2(0)),2(0)) & Zu0) — span(X (z(t)), z(2) & Zaq)-

The construction of the trivialization is as follows: For n > 1 every loop in
¥ is contractible we find a map v : [0, 1] — ¥ such that u(1,¢) = z(t) and
u(s,0) = u(s,1) = u(0,t) = u(1,0). We trivialize =, and span(X(z), x)
over the image of u. Via u we pull back this trivialization to [0, 1]* and
get a map

I:[0,1]> — Sp(n)
with
F(S, t) : Tu(s’t)RQn — Span(X(“(sa t))a U(S, t)) @ EU(SJ)

and ['(s,0) =T(s,1) =T(0,¢) =Ty

We have uy(¢(t)) = pv(Tep(t)Ty'). In fact, since Sp(n) is path con-
nected we can join 'y with I by a path ¢(r) € Sp(n). Using the defor-
mation invariance for 1 (r)¢(t)y ="' (r) we get

1y (B(t) — py (Lo (t)T5 )
= w@Me)Y(1)™) = pv (¥ (0)d(t)1(0) ™)
= v ((r)o(1)Y ™" (r)) = pv((r)e(0)y(r) ™)
= v (@(r)e()y(r)™) —0=0
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We have used that ¢(0)=I=t(1) and that uy (¢ (r)¢(1)1(r)"!) can only

be non zero if
Ker(y(r)¢(1)y(r) " = 1)
changes dimension. But
dim(Ker(y(r)¢ (1)1 (r) " — 1)) = dim(Ker(4(1) — 1))

which is independent of r.

Using the deformation invariance again we find

py (DL (0T ) — pv(o(t))
= pv(T(L 1Ty — pv(Ted(H)T5 )
= w(T(1LH)e"T5") — pv(T(0,4)¢(H)05 ")
= (s, De(MTF) — v (T(s,0)6(0)05 )
= 0,

since these are constant paths.

Writing T'(1,¢) = I'; we have to compute the index of the path of matrices
Loy "« span(X (2(0)), z(0)) @ Zuo) — span(X (z(t)), z(t)) & Zaqy
which are matrices of the form
( ¢i(t) 0 )
0 () )

Here ¢;(t)is a 2x2 matrix and ¢»(t) is a (2n—2) X (2n—2) matrix. Since
é(t) X (2(0)) = X (x(t)) and since ¢ (t) is symplectic

This matrix never has an eigenvalue —1, so that py(¢1(¢)) = ind ¢4(1) —
ind ¢;(0). We compute

oo =g = (2370 )
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We conclude that uy(¢1(t)) = 0 or 1. Differentiating the flow we find by
equation (8)

d

5 (8() = —JH"4(1)

1/ / ]' ! / I]' "
= —J((g —g)(1<h,-><h,->)+g§h )o(t).

Since ¢’ = 2 we see that restricted to =, (where < h',- >= 0) we have:
H"|z, = h"|=,. If ¢"(t) denotes the linearized time one flow associated to
h" along x(t) we have for

" ()" = ( d)}fo(t) ¢h0(t) )

that the matrices ¢(#) and ¢,(t) corresponding to the =, component
agree. Consequently,

2n < v (e"(t) = pv(et(®) + pv(dh(t))
= v (@1 (1) = v (61(1) + pv (B(1)).
(

(
(

Since for the flow associated to h we have d¢y(x).x = ¢y(x) and
(

dgy(2(0)). X (2(0)) = X(¢4(z(0)))
we have ¢1(t) = I and py(¢1(t)) = 0. Consequently,

2n — 1 < py(op(t)).

Proof of part iv) Denote by ¢~ the linearized flow associated to the
Hamiltonian —h. Writing

(=h)
Ty = ( % 0 Q ¢(S)(t) )

we get since for the flow associated to —h we have dg;(z(0)). X (z(0)) =

X(6u(a(0))
o= (11),

pv(o(t)) < —k+ 1.

Hence
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5.2 The capacity

Theorem 5.4 Let ¥ C R?" be strictly convez, bounding the open and
bounded set U such that OU =Y. Then

Proof: For simplicity we assume that 0 € U.

We find a sequence Hj, of Hamiltonians such that for the associated time
one maps ¢* we have ¢, (¢*) — ¢, (U). We can choose the Hj such that
Hy, =const= ¢, for x € (1 — 1/k)U and supp(Hy) C U and Hy < Hp,q,
see figure 3.

b)) U by

Figure 3: Hy

For fixed £ and A > 0 we define

Hy(x) = (1= 1/k) 2H((1 = 1/k)x)

see figure 4) with associated time one maps @*.
g

Figure 4: H,
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By proposition 3.24 we get ¢, (@*) = (1 — 1/k)~2c,(*). Consequently

lim ¢y (%) = ¢(U).

k—oo

Observe that Hy =const on U.

For fixed k£ we consider a continuous family of differentiable functions
gr.s 1 [0,1] = R with s € [0, 1] with

Gr,s(r) = (1 = s)cp for r =0
Ghs(r) > 0 for r €]0,1—1/(k)|

Grs(r) =c¢ forr € [1 —1/(k), 1].

We consider the Hamiltonians (see figure 5)

N H, on R\ U
Hk,s =

gk,s(\/ﬁ) on U.
) U )

Figure 5: I:Ik,s

Let Cp,’f’S be the flow associated to }NI,M. We want to show that
Nk) = C+(S~0k’0) = C+(@k’1)-

Let S‘k,s : 82" x RF — R be a family of generating functions generating
P"*. Denote by Qk,s the quadratic form at ‘infinity’. By a small pertur-
bation in a neighbourhood of the points associated to U we may assume
that the critical points of the perturbed family S’k,s are non degenerate
for almost all s whenever this critical point generates a point in U.
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If »F* denotes the family of symplectic diffecomorphisms associated to S‘k,s

we have that ¢, ($"*) is arbitrary close to ¢, (@**). So we are done if we
show that
e (§) = ey (M)

The capacity c4(¢™*) depends continuously on s. Since on R*™ \ U we
have ¢* = % and since the action spectrum is compact and nowhere
dense we see that the fixed points z, of ¥ which are associated to a
critical point py of Sy s such that
Sk,s(ps) = c1(¢")

have to be inside U whenever the capacity changes. We can now find a
contradiction to the assumption that the capacity changes by looking at
the Maslov indices.

Around z = 0 we can assume that the Hamiltonian associated to @** and

@™ is given by ¢ (22 4 3?) with 0 < ¢ < 7. We conclude py (V) > 2n.

For a fixed point z, # 0 of $** inside U we have that 1%, gbf’s is arbitrary
close to T, @**. By proposition 5.3 we have puy (T, o) > 2n — 1.

We claim that sy (T, ") > 2n — 1. To this end we consider a path v
from T, 3" € Spp(n) to T, $¥*. Generically T, ¢"* has no eigenvalue
+1. By the argument in proposition 4.8 we can assume that 7, c,b]f’s has
no eigenvalue —1 either. Thus uy(y) = ind T,,¢%* — T,,¢%* > 0. By
deformation invariance we have

pv(ind T, 317") = py (ind Tp, ") + pv () > 20— 1.

Hence, by proposition 4.9, ind dQS’k,s(ps) — ind Qk,s > 2n — 1. Since
for almost all s we have that d®Sj (ps) is non degenerate we have by
proposition 3.6 ind d?Si s(ps) — ind Qs = 0 which is a contradiction. So

z, has to be inside U and ¢, (¢**) cannot change.

To finish our proof we define a homotopy g, of functions which deform
gk, to 0 on [0,1 — 2/k] such that g; . > 0 where g;, > 0.

Define (see figure 6)

_— Hj, on R**\ U
e Grr (V) on U.
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b)) U by

Figure 6: I:Ik,r

Denote the associated flow by @*". In view of the above index argument
the critical point associated to ¢4 (¢"") cannot be located where g; . > 0.
It also cannot be located where gi, = 0 since then ¢, (@*") would have

to jump to zero. Hence

e (@) = e (@M0) = ey (7).

Consequently the maps ¢*! constitute a sequence with supp(Hy,1) — &
and c, (") — ¢(U) O
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6 A ‘generalized fixed point theorem’

Theorem 6.1 Let ¥ C R?" be a closed strictly convexr smooth hyper-
surface. Denote by Lx(x) C X the leaf of the characteristic foliation
defined by ker(wly). Let ¢ be the time one diffeomorphism of the flow of
a time dependent Hamiltonian vector field Xg whose Hamiltonian K is
compactly supported.

If
1Y) < (%)

then there ezists a point x € ¥ with 1(x) € Ly(x).

Remarks: In Moser’s theorem 2.1 one needed that K was C'-closed to
the identity. Our theorem might be interpreted as a smallness condition,
too. We know that v()) = 0 <= ¢ = I and the capacities are
continuous for the C°-norms on Hamiltonian functions and on symplectic
diffeomorphisms with compact support. Every strictly convex open set
contains a ball with non zero capacity. Hence the capacity of ¥ is non
zero. We conclude that if K is C%-closed to zero respectively 1 is C°-
closed to the identity then a point x € ¥ with ¢(z) € Lyg(z) always exists.
Thus we have replaced C'-closed by C?-closed.

Our theorem is not only a smallness condition. In applications one may
use that v(¢) < sup K — inf K by proposition 3.17. We do this after
proving the theorem.

Proof:
In the first part the proof follows the lines of theorem 5.4.

We start with a Hamiltonian function H with suppH C U with associated
flow ¢ such that

1) < i (@) < e(U).

and H = const = c on (1 — p)U. We can find a family of Hamiltonian
functions Hy, 6 € (0,1/2) such that Hs, > Hs, > H for 6; < 09, suppHs C
U and H; =con (1+6)'U.
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By proposition 3.24 we have that Hs := (14 6)2Hs((146) 'z) is a family
of Hamiltonian functions such that for the associated flows @ we have

V(W) < ex(9°) < (1+6)°e(U) < 3¢(U).

Note that Hy = (1 + 6)%¢ < 3¢ on U and suppHs C (1 + 0)U. As in
theorem 5.4 we can deform these Hamiltonians to Hamiltonian functions
H;s with suppH; C (1+6)U \ (1 — §)U such that for the associated flows
we have

We have by proposition 3.13 (vi)

(@) 2 e (9°) + e (1) = c1(8°) = Y(¥) + ex (%) > ex ().

Let s — @° be the flow of H;. Consider the Hamiltonian diffeomorphism
2. Let H,; be a Hamiltonian associated to @21,

., (@%)) changes continuously in s by Proposition 3.15. The action of
periodic orbits z of ¢ with x(0) ¢ (1+0)U \ (1 —6)U does not change
in 5. The action spectrum of #%¢) is compact and nowhere dense, so the
fixed points transporting ¢, (¢) to ¢ (@31)) have to bein (14+6)U\(1—0)U.

Therefore there has to be a 0 < s < 1 and a 1-periodic orbit x associated

to Hy s with 25(0) € (14 0)U \ (1 —6)U such that

4 (20) = —Apn(ws) = e (810).

(Remark: we cannot take s = 1 because the periodic orbit representing
cy might switch to some other region for s < 1 and stay there unchanged
until s = 1.)

Define H; := s - H; with time one diffeomorphism @6. Consequently
Py = ¢

For each & we have found a fixed point z3 of ¢°¢ with
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Ts € Vige, —0<e<O.
Associated to x4 there is a curve z4(t), t € [0,2] with z5(t) = ¢(xs),
t €[0,1] and z5(t) = @), (z5), t € [1,2].

Denote by Liic(x) := L1105 () the leaf of the characteristic foliation on
(1 + €)X through x (and analogously with the characteristic line bundle:

Lisd).

We have x4(t) € Lyiyc(v(z5)) for t € [1,2] because (1 +¢€)¥ is a regular
energy surface for Hy.

Let K be a Hamiltonian for ). We have

[lmh = Loy 4 K@), dt + [7 Hylws(t)) dt
— flapn = [ K(xs(t), 6y dt —  [7 Hs(xs(t)) dt

Remembering that d\ = —d(pdq) we observe that the first three sum-
mands are equal to

c+(P"9) < e (@) +er () S (1 +0)U) +¢(U) < 4e(U).

The next two summands are bounded because K and K’ are bounded
and the last one is bounded by k.
So ff xj;)\‘ < const. For§ < 1/2 and (x,&) € Ly4.(x) we have |A(x)(§)] >

d|¢| where d > 0 (because (1+8)U\ (1 —8)U is compact and A(z)(£) > 0).
Since %5(t) € Liye(xs) for ¢ € [1,2], 23\ does not change sign on [1, 2]
and we obtain

2
/ T3\
1

So length(zs|p.9) < 1.
By ‘Arzela-Ascoli’ we find a subsequence x5, converging to a curve z :
[1,2] — 3 with x5, — 2(0) and ¢(zs, ) — (x(0)), where

U(Ts,,) € Lite(ms,,).

The foliations on the hypersurfaces depend smoothly on the radius and
the length of the leaves connecting x5 to 1(zs,,) is bounded by . There-
fore = and ¢ (x) are connected by a leaf of bounded length.

const >

2 2
:/ x;‘)\z/ A is(t)] dt = d - length(zs] ).
1 1
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This proves the theorem. O

Remark: There is some hope to generalize this theorem to starshaped
hypersurfaces or even hypersurfaces of restricted contact type.

We might try to generalize the proof to coisotropic submanifolds A ¢ R?"
of codimension k£ > 1. To foliate neighbourhoods of A with conformal
copies of A we would need k one forms Ay, ..., \; such that d\; = w and
M AL AXN Aw'F s a volume form on A. Bolle in [Bol] considered
such submanifolds of ‘p—contact—type’ where the \; are defined only in a
neighbourhood of A.

However, to perform our estimates we need that the forms are globally
defined — unfortunately this is not possible. To see this we assume
that the \; exist globally. We then have d\; — d\; = 0 which implies
Ai — Aj = df. We have that d(f|4)(x) = 0 for some z € A. Hence
Aila(®) = Njla(z) and Ay A ... A X Aw™ % cannot be a volume form on

A.

Application to harmonic oscillators

Define Hy(q,p) = 3¥a;(q? + p?) where a; > 0. Let a := minf{a; | 1 <i <
n}. The ellipsoid

S = {(g,p) € R* | Hy(q,p) = 1}

has capacity ¢(X) = a?m: We may assume that a = a;. Then B*'(a) C
Y C Z?"(a) and ¢(B*"(a)) = a*n = c(Z%"(a)).

Corollary 6.2 Let Ho(q,p) = 33a;(¢? + p?) with 0 < a := min{a;} with
associated time one diffeomorphism ¢° and H, : RxR?" — R with support
in [0,1] x U with U bounded. Let ©" be the flow associated to Hy and 1)
be the flow of Hy + Hy. If

i)y(¥) <7 or i) supH, —infH, <7

then there exists a point x € Hy *(1) =: ¥ such that 1)(x) is on the same
orbit of ©° as x.
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Proof: The leaves of the characteristic foliation on ¥ are the orbits of .
Consequently, we look for points x such that ¢)(x) € Lx(x). Hence i) is a
simple consequence of theorem 6.1. To prove ii) we observe that

U(x) € Ly(z) <= (¢°)7"d(x) € La().
As proved in [HZ], proposition 5.1, we see that
K(t,x) = (Hy + Hi)(t, ¢, (x)) — Ho(p¢(2)) = Hi(t, ¢} ()

is a Hamiltonian for (°) '4. Since sup K —inf K = sup H,—inf H; < a*m
we have by proposition 3.17 ((¢°) ') < a*r so that we can apply the
theorem. O
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A Coisotropic submanifolds and symplec-
tic reduction

We explain the concepts of coisotropic submanifolds and symplectic re-
duction following Weinstein [W].

Let M be a symplectic manifold of dimension 2n and A C M be a r—
codimensional submanifold. In the tangent bundle the symplectic com-
plement is defined by

T,AY ={¢ e T,M |w(&n) =0V neT,A}

The submanifold A is called coisotropic if T,AY C T, A. If T,AY =T,A
we call A Lagrangian. In this case we have dimA = n. Another important
example of coisotropic submanifolds are hypersurfaces as level surfaces of
functions M — R.

T,A% defines a r—dimensional distribution on T, A. The distribution
T, A% =: L, is called characteristic distribution and in the case of hyper-
surfaces characteristic line bundle.

There is a particularly interesting class of hypersurfaces

Definition A.1 A hypersurface ¥ C R?" is of contact type if on a neigh-
bourhood of ¥ there exists a 1-form X\ such that d\ = w and A A w™ ! is
a volume form on X.

Y 1s of restricted contact type if A can be defined globally

Example: Starshaped domains.

We return to an arbitrary coisotropic submanifold A. We observe that
for two vector fields &, & in TAY and any vector field n in T A

0=dw(,&.n) = —w([&, &) n)-

Hence [£1,&] € TAY. By Frobenius’ theorem the distribution is inte-
grable. we denote by L4(z) the leaf through x € A. We locally have
a (n — r)-dimensional manifold M4 whose tangent space is given by
T,A/T,A¥. We call M, reduction of M by @ and write 7 : A — M,. In
fact M, is a symplectic manifold because w is independent on the point
chosen on the leaf of the foliation:
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Let & be a vector field with &(z) € T, AY.
ng = d(igw) + igdw = 0.
Denote by w4 the reduced form. We have for &;,& € T, A

w(&1, &) = wa(m(&), m(&2))-

We next need the following

Proposition A.2 Suppose that the reduction of M by A exists. Let L C
M be Lagrangian such that L intersects A transversally, that is T, A +
T.L=T,M for any x € LN A.

Then the reduction w(L N A) is an immersed Lagrangian submanifold of
My.

Proof: First we show that TLNTAY = {0}. Assume that £ € TLNTAY
and & # 0. Then there exists n € TM such that w(¢,n) # 0. Due to
transversality we can write n = 1, + 1, with 7, € TL and n, € TA. But
then w(&,m) = 0 and w(&,19) = 0, a contradiction.

We have for x € A that ker(T,m) = T, A“. Hence for 7|pna : LNA — My
we have ker(T,m|pna) = {0}. Hence 7|pn4 is an immersion. We have to
show that 7(L N A) is Lagrangian. Clearly w4 restricted to m(L N A) is
zero, hence m(L N A) C (x(L N A))¥.

For ¢ € (T,LNT,A)* we show that &£ € (T,LNT,A)+ T,A“. Since this
space is mapped to 7(T,LNT,A) we then have (&) € (T,LNT,A), hence
m(LNA) D (r(LNA)Y.

Let £ € (T,LAT, A = T,L¥ + T, AY = T,L + T, A¥. Hence £ = £, + &
with & € T,L and & € T,AY. But T,AY C T,A. Consequently & =
£E—&eT,A Thus & € T,LNT,Aand € € (T,LNT,A) +T,A%. O
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B Different Maslov indices

In his paper [A] Arnold presented two equivalent ways to define an index
for loops of Lagrangian subspaces as proposed by Maslov. It uses the fact
that for the set of Lagrangian planes A(n) in R?" we have 7,(A(n)) = Z.

Since then many different versions to generalize this index to arbitrary
paths have appeared. In their paper [CLM] Cappell, Lee and Miller pre-
sented four equivalent ways to generalize the index from [A] — two of
them as direct generalizations of Arnold’s ideas and two via infinite di-
mensional spectral flows.

They considered any index for paths of pairs of Lagrangians (L;(t), La(t))
that satisfies the properties (i)—(iv) of proposition 4.4. (It is no problem
to reformulate (i)—(iv) for pairs). In addition the index p has to satisfy
a symplectic invariance property: u(Li(t), Lo(t)) = u(oLy(t), pLo(t)).
We only need that for symplectic automorphisms ¢ with ¢‘(R"x{o}) =1d
we have p(¢(7)) = p(v).

We now present their technique. We restrict ourselves toa = 0 and b = 1.
Consider a path ~: [0, 1] — A(n).

First we have to show the symplectic invariance property. We look for a
homotopy ¢(s) in Sp(n) joining ¢ and I such that ¢(S)|(R"x{o}) =id .

I B
=0 7)
and then find any homotopy B(s) of matrices that joins B to 0. We thus
found the desired homotopy.

We can write

For ¢(s) and any Lagrangian L we have
¢(s)(L) N (R™ x {0}) = L (g(s) (R" x {0})) = LN (R" x {0})

such that the dimension of the intersection stays constant. By deforma-
tion invariance we then have pu(¢(y)) = p(7y).

We now write RF @ iR"*0 for Rk x {0} x {0} x R"~k c R?>". By
symplectic invariance and symplectic additivity we can assume that v(0)
is given in the following form: ~(0) = Rk @ iR"7% and (1) = RF &
iRk,
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Now we begin with the construction. We add a tail to the ends. Consider
Y (t) = (e"R¥) @ iR"*. From [A] we know that for small ¢ # 0 the path
has trivial intersection with R” x {0}. We then consider the path

(ol +7/2) for t € [=7/2, —/4

ko(—t) for t € [—7/4,0]

3(t) = § y(t) for t € [0,1]
(
(

2

Ve, (=1 +¢) for t € [1,1+ 7/4]
(W (L+7/2 1) fort € [1+ /4,1 +7/2]

Since the added tails are traversed in both directions we have py (vy) =
pv (7).

Att = —n/4 and t = 147 /4 there is only trivial intersection with R"N{0}.
We can deform ¥|;_r/414-4 to a path with which only intersects A(n)
transversally and none of the Agx(n) with & > 1. Let us assume that it
intersects A;(n) p times like 'R x iR"™" and ¢ times like e ™R x iR""!,

We define z = pu(e"R|yeqo,x/4)) and y = p(e " R]ye(—r/a0))- (A subscript at
x and y will in the following denote a special index.) Close to the end
points we can compute the Maslov indices by symplectic additivity.

Summing up we obtain p(y) = u(y) = kox + (x + y)p — (x + y)q + k1.

As proved in proposition 4.4 we have for uy that

ry =0 and yy = —1.
Consequently

py(y) = —(p—q) — k1.

The index of Cappell, Lee and Miller

The index pcpy of Cappell, Lee and Miller satisfies zopy, = 1 and
yorm = 0. Consequently for any path «y

perm () = ko + (p — q)
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and
pv(y) = —perm(v) +dim(y(0) N (R™ x {0})) — dim(y(1) N (R" x {0}))

For loops the index oy agrees with the Maslov index defined by Arnold.
Consequently puy is the negative Maslov index for such paths.

The index of Robbin and Salamon

In [RS] Robbin and Salamon defined another Maslov index pigs via the
signature of an intersection form. They count signs at starting and end
point with a factor 1/2.

Consequently zrs = yps = 1/2 and ups(y) = 1/2ko + (p — q) + 1/2k;.
Hence

v ()
= —prs(7) +1/2(dim(y(0) N (R™ x {0})) — dim(y(1) N (R" x {0})).
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